摘要:
A hydrogen storage tank has an outer cylinder and a cylindrical hydrogen storage module within the outer cylinder spaced apart from an inner peripheral surface of the outer cylinder to provide a hydrogen passage therebetween. The cylindrical hydrogen storage module includes a lamination having a plurality of hydrogen storage units filled with powdery hydrogen absorption material and a hydrogen absorption and desorption surface on an entire outer peripheral surface, while interposing a heating/cooling element between ones of adjacent units. First and second main passages penetrate the lamination in a lamination direction of the units, and permit heating fluid and cooling fluid to flow therethrough. Sub passages branch from the main passages and extend over within each of the heating/cooling elements.
摘要:
A mixed powder of AlH3 and MgH2 is ball-milled in a hydrogen atmosphere while applying force of 5 G through 30 G (in which G is gravitational acceleration), and the thus-obtained milled product is dehydrogenated to produce a hydrogen storage material. The hydrogen storage material comprises an amorphous phase containing an Al—Mg alloy as a mother phase, and a crystalline Al phase having a maximum length of 100 nm or less, the crystalline Al phase being distributed as a dispersed phase in the mother phase.
摘要:
After AlH3 is synthesized, ball milling is performed under a condition in which a force of 2 G to 20 G (G represents the acceleration of gravity) is applied, to thereby provide AlH3 having an X-ray diffraction pattern in the form of a halo pattern. That is, for example, nanostructured AlH3 is provided, in which a grain boundary phase intervenes in a matrix phase, a side length t2 of the matrix phase is not more than 20 nm, and a width w2 of the grain boundary phase is not more than 10 nm. Alternatively, amorphous AlH3 may be provided. Further, hydrogen is released from AlH3 on which ball milling has been completed, and then the hydrogen is absorbed to induce a change into AlHx (provided that 0
摘要:
A hydrogen storage tank comprises a hydrogen adsorbent accommodated in a pressure-resistant container. The hydrogen adsorbent is capable of adsorbing and retaining hydrogen gas of a volume exceeding an occupation volume occupied by the hydrogen adsorbent itself. As for the hydrogen adsorbent, the amount of endothermic heat, which is generated when the adsorbed hydrogen gas is released, is not more than 16 kJ per mol of hydrogen molecules. The hydrogen adsorbent is prevented from leaking outside of the pressure-resistant container by a filter.
摘要:
To produce a hydrogen absorbing alloy powder which is an aggregate of alloy particles each including a metal matrix and added-components, an aggregate of metal matrix particles and an aggregate of added-component particles are used, and mechanical alloying is carried out. In this case, the relationship between the particle size D of the metal matrix particles and the particle size d of the added-component particles is set at d≦D/6. Thus, the milling time can be shortened remarkably.
摘要翻译:为了制备作为各自包含金属基体和添加成分的合金粒子的集合体的吸氢合金粉末,使用金属基体粒子和添加成分粒子的集合体,进行机械合金化。 在这种情况下,金属基体粒子的粒径D与添加成分粒子的粒径d之间的关系为d <= D / 6。 因此,可以显着缩短研磨时间。
摘要:
A crystalline AlH3 is ball-milled in a hydrogen atmosphere while applying a force of 10 G to 30 G (in which G is gravitational acceleration). The milling time is more than 10 minutes and less than 60 minutes. The hydrogen storage material thus produced has a structure containing a plurality of matrix phases and a grain boundary phase disposed between the matrix phases. The matrix phases comprise Al and have a side length of 1 to 200 nm, and the grain boundary phase comprises an amorphous phase and contains hydrogen in the state of a solid solution.
摘要:
An organometallic complex [Cu2(pyridine-3,5-dicarboxylate)2]n is provided by bonding a plurality of Cu2(pyridine-3,5-dicarboxylate)2 repeating units to each other. The organometallic complex can be obtained by the steps of dissolving copper acetate monohydrate or anhydrate and pyridine-3,5-dicarboxylic acid in a solvent, heating the solution at 50° C. to 140° C. for 24 to 168 hours to generate a reaction product, and then removing a guest molecule from the reaction product.
摘要:
A crystalline Al phase and a crystalline TiH2 phase each having a maximum length of 200 nm or less are dispersed in an amorphous phase containing an Al—Mg alloy to obtain a hydrogen storage material capable of reversibly storing and releasing hydrogen.
摘要:
A crystalline Al phase and a crystalline TiH2 phase each having a maximum length of 200 nm or less are dispersed in an amorphous phase containing an Al—Mg alloy to obtain a hydrogen storage material capable of reversibly storing and releasing hydrogen.
摘要:
An unactivated, poorly activatable hydrogen storage component and an activated hydrogen storage component are mixed to prepare a hydrogen storage material. When the hydrogen storage material is activated, the poorly activatable hydrogen storage component is converted to a hydrogen storable state in a remarkably short time. The poorly activatable hydrogen storage component may be a V—Cr—Ti hydrogen storage alloy having a body-centered cubic (BCC) crystal structure. The activated hydrogen storage component preferably is MgHx (0.1≦x≦2) doped with a nanoparticle of at least one atom selected from the group of Ni, Fe, Ti, Mn, and V.
摘要翻译:将未活化的,不易活化的储氢组分和活化的储氢组分混合以制备储氢材料。 当储氢材料活化时,不能活化的储氢组分在非常短的时间内被转化为可储氢的状态。 不易活化的储氢组分可以是具有体心立方(BCC)晶体结构的V-Cr-Ti储氢合金。 活化的储氢组分优选掺杂有选自Ni,Fe,Ti,Mn和V的至少一种原子的纳米颗粒的MgH x(0.1 <= x <= 2)