摘要:
The present invention provides a method of micropropagating a monocotyledonous plant comprising: (a) cultivating an explant of tissue from a monocotyledonous plant shoot tip on a primary medium, wherein the explant has been pretreated with a cold temperature and the primary medium comprises auxin or auxin and cytokinin, to produce a totipotent embryogenic cell culture; (b) treating the totipotent embryonic cell culture with a cold temperature; (c) maintaining the totipotent embryogenic cell culture by cultivation on a secondary medium, whereby a totipotent embryogenic cell culture of a monocotyledonous plant is produced and maintained; and (d) transferring the embryogenic cell culture of step (c) to a tertiary medium to continue multiplication and to produce a plantlet with roots and shoots, thereby micropropagating a monocotyledonous plant. The micropropagation techniques described herein provide plants for such purposes as development of elite plant lines, phytoremediation and biomass production.
摘要:
The present invention provides a method of micropropagating a monocotyledonous plant comprising: (a) cultivating an explant of tissue from a monocotyledonous plant shoot tip on a primary medium, wherein the explant has been pretreated with a cold temperature and the primary medium comprises auxin or auxin and cytokinin, to produce a totipotent embryogenic cell culture; (b) treating the totipotent embryonic cell culture with a cold temperature; (c) maintaining the totipotent embryogenic cell culture by cultivation on a secondary medium, whereby a totipotent embryogenic cell culture of a monocotyledonous plant is produced and maintained; and (d) transferring the embryogenic cell culture of step (c) to a tertiary medium to continue multiplication and to produce a plantlet with roots and shoots, thereby micropropagating a monocotyledonous plant. The micropropagation techniques described herein provide plants for such purposes as development of elite plant lines, phytoremediation and biomass production.
摘要:
A method is provided for generating sustained totipotent tissue cultures of a plant of the Class Monocotyledonae, and for micropropagating such plant in vitro, wherein immature inflorescence are cultivated to produce totipotent tissue which is suitable for sustained maintenance and propagation. Greening of the tissue can be induced under light and the multishoot culture can multiply by microtillering. Foreign genes can be introduced into the tissue if desired, and the transgenic plants can be used in phytoremediation technologies in the field and in phytoreactors independently of seasons.
摘要:
The present invention provides a method of micropropagating a monocotyledonous plant comprising: (a) cultivating an explant of tissue from a monocotyledonous plant shoot tip on a primary medium, wherein the explant has been pretreated with a cold temperature and the primary medium comprises auxin or auxin and cytokinin, to produce a totipotent embryogenic cell culture; (b) treating the totipotent embryonic cell culture with a cold temperature; (c) maintaining the totipotent embryogenic cell culture by cultivation on a secondary medium, whereby a totipotent embryogenic cell culture of a monocotyledonous plant is produced and maintained; and (d) transferring the embryogenic cell culture of step (c) to a tertiary medium to continue multiplication and to produce a plantlet with roots and shoots, thereby micropropagating a monocotyledonous plant. The micropropagation techniques described herein provide plants for such purposes as development of elite plant lines, phytoremediation and biomass production.
摘要:
A method is provided for generating sustained totipotent tissue cultures of a plant of the Class Monocotyledonae, and for micropropagating such plant in vitro, wherein immature inflorescence are cultivated to produce totipotent tissue which is suitable for sustained maintenance and propagation. Greening of the tissue can be induced under light and the multishoot culture can multiply by microtillering. Foreign genes can be introduced into the tissue if desired, and the transgenic plants can be used in phytoremediation technologies in the field and in phytoreactors independently of seasons.
摘要:
It has been discovered that an enzyme produced by Spartina alterniflora degrades halogenated organics. The present invention is therefore the use of the enzyme produced by genes of this plant to remediate soils contaminated with halogenated organics such as TCE, and to genetically alter other plants to produce this enzyme using the gene that produces plant dehaloperoxidase.
摘要:
The present invention provides a method of micropropagating a monocotyledonous plant comprising: (a) cultivating an explant of tissue from a monocotyledonous plant shoot tip on a primary medium, wherein the explant has been pretreated with a cold temperature and the primary medium comprises auxin or auxin and cytokinin, to produce a totipotent embryogenic cell culture; (b) treating the totipotent embryonic cell culture with a cold temperature; (c) maintaining the totipotent embryogenic cell culture by cultivation on a secondary medium, whereby a totipotent embryogenic cell culture of a monocotyledonous plant is produced and maintained; and (d) transferring the embryogenic cell culture of step (c) to a tertiary medium to continue multiplication and to produce a plantlet with roots and shoots, thereby micropropagating a monocotyledonous plant. The micropropagation techniques described herein provide plants for such purposes as development of elite plant lines, phytoremediation and biomass production.
摘要:
The present invention provides a method of micropropagating a monocotyledonous plant comprising: (a) cultivating an explant of tissue from a monocotyledonous plant shoot tip on a primary medium, wherein the explant has been pretreated with a cold temperature and the primary medium comprises auxin or auxin and cytokinin, to produce a totipotent embryogenic cell culture; (b) treating the totipotent embryonic cell culture with a cold temperature; (c) maintaining the totipotent embryogenic cell culture by cultivation on a secondary medium, whereby a totipotent embryogenic cell culture of a monocotyledonous plant is produced and maintained; and (d) transferring the embryogenic cell culture of step (c) to a tertiary medium to continue multiplication and to produce a plantlet with roots and shoots, thereby micropropagating a monocotyledonous plant. The micropropagation techniques described herein provide plants for such purposes as development of elite plant lines, phytoremediation and biomass production.
摘要:
The present invention provides a method of micropropagating a monocotyledonous plant comprising: (a) cultivating an explant of tissue from a monocotyledonous plant shoot tip on a primary medium, wherein the explant has been pretreated with a cold temperature and the primary medium comprises auxin or auxin and cytokinin, to produce a totipotent embryogenic cell culture; (b) treating the totipotent embryonic cell culture with a cold temperature; (c) maintaining the totipotent embryogenic cell culture by cultivation on a secondary medium, whereby a totipotent embryogenic cell culture of a monocotyledonous plant is produced and maintained; and (d) transferring the embryogenic cell culture of step (c) to a tertiary medium to continue multiplication and to produce a plantlet with roots and shoots, thereby micropropagating a monocotyledonous plant. The micropropagation techniques described herein provide plants for such purposes as development of elite plant lines, phytoremediation and biomass production.
摘要:
A method is provided for generating sustained totipotent tissue cultures of a plant of the Class Monocotyledonae, and for micropropagating such plant in vitro, wherein immature inflorescence are cultivated to produce totipotent tissue which is suitable for sustained maintenance and propagation. Greening of the tissue can be induced under light and the multishoot culture can multiply by microtillering. Foreign genes can be introduced into the tissue if desired, and the transgenic plants can be used in phytoremediation technologies in the field and in phytoreactors independently of seasons.