Abstract:
The present invention relates to a method of charging a battery having internal resistance, the method including the step of feeding the battery with substantially constant charging current at a charging voltage that is regulated so as to compensate at least in part for the voltage drop generated by the internal resistance of the battery. The invention also provides a charger and a battery for implementing the method.
Abstract:
A device for stopping the running of programs being executed in a microprocessor prior to the disappearance of the power supply voltage of the microprocessor comprising a differentiator circuit shunted across the power supply line VA of a microprocessor for inhibiting the access circuit to the internal RAM in the microprocessor and for reinitializing the internal circuits of the microprocessor as soon as the power supply voltage level VA begins to decrease from a predetermined decrease threshold.
Abstract:
The present invention relates to a method of supplying electrical power to an equipment by means of a battery, said method including the step of short-circuiting the battery until it has a temperature greater than a predetermined threshold, characterized in that the battery is short-circuited with a temporal duty ratio determined to keep the equipment functioning and to maintain the temperature of the battery above the predetermined threshold. The invention also relates to a battery and an electrical equipment for implementing that method.
Abstract:
The invention relates to a battery provided with a self-discharge circuit comprising an activation element for activating the self-discharge circuit and at least one current-consuming element connected to terminals of the battery via a connection member that can be actuated selectively to go into a self-discharge circuit connection state or to go into a self-discharge circuit disconnection state, and that is caused to disconnect the self-discharge circuit at a predetermined charge state that is less than a rated charge state of the battery. The invention also relates to equipment provided with a discharge circuit for discharging the battery, and to methods of putting such a battery or such equipment into a storage condition.
Abstract:
The present invention relates to a method of managing a supply of electrical power to an appliance that is delivered by means of at least a first battery and a second battery, said method comprising the following steps: powering the appliance by means of the first battery so long as said first battery has a level of charge sufficient for powering the appliance; when the battery has a level of charge that is insufficient, powering the appliance by means of the second battery; and powering the appliance with both of the batteries in parallel when the levels of charge of both batteries are substantially equal and insufficient for it to be possible to power the appliance using a single one of the batteries. The invention also relates to an electrical power supply circuit for implementing said method, and to a method of powering an appliance when cold.
Abstract:
A circuit for high speed control a field effect power transistors. This circuit has a transformer with a primary winding and a secondary winding. The secondary winding transmits control signals to gates of the field effect power transistors. An energy storage structure is coupled to the transformer, and stores energy required for controlling the gates of the field effect power transistors. This energy is stored during an inactive phase of the control signal. A transmission structure is coupled to the transformer, and is fed with energy stored in the energy storage structure. In this way, the transmission structure uses energy stored in the energy storage structure to supply the control signals to the gates of the field effect power transistors. Therefore, the secondary of the transformer is not loaded during this time. At other times, the transmission structure isolates the output of the transformer from the rest of the circuit.
Abstract:
A set of a first apparatus and a second apparatus that are secured to a garment, each of which includes an electrical signal processor unit connected to a first terminal and to a second terminal. At least the second terminal faces an inside surface of the garment, the processor units and the terminals being arranged to perform data transmission between the two apparatuses by establishing at least one wireless connection between the first terminals of the two apparatuses.
Abstract:
The device for protecting a connector comprising two mutually engageable connector elements itself comprises for each connector element, a resilient tubular sleeve having one end configured to be fastened to a respective connector element by surrounding it in leaktight manner, and having a length at rest that is sufficient for it to be cantilevered out beyond one end of the connector element carrying the resilient sleeve, the cantilevered-out end including spring blades for flattening the sleeve and holding the corresponding lips pressed resiliently one against the other.
Abstract:
The present invention relates to a method of managing a supply of electrical power to an appliance that is delivered by means of at least a first battery and a second battery, said method comprising the following steps: powering the appliance by means of the first battery so long as said first battery has a level of charge sufficient for powering the appliance; when the battery has a level of charge that is insufficient, powering the appliance by means of the second battery; and powering the appliance with both of the batteries in parallel when the levels of charge of both batteries are substantially equal and insufficient for it to be possible to power the appliance using a single one of the batteries. The invention also relates to an electrical power supply circuit for implementing said method, and to a method of powering an appliance when cold.
Abstract:
An automatic symmetry correction circuit is provided for a symmetrical current chopper. This structure includes two current channels controlled alternately by two signals of frequency f.A resonant LC circuit is tuned to the frequency f and energized by the currents passing through each of the two channels.A control circuit is coupled to the resonance circuit for adjusting the symmetry between the amplitudes of the currents flowing through each of the two channels as a function of the amplitude of the oscillations of frequency f generated by the resonance circuit.