Abstract:
Process for preparing a catalyst active for the fluid bed acetoxylation of ethylene to produce vinyl acetate. The process comprises the steps of (a) impregnating microspheroidal silica support particles by the incipient wetness technique with an aqueous solution of palladium and gold compounds, whilst agitating the support particles; (b) drying the impregnated support particles produced in step (a) whilst agitating the impregnated support particles; (c) reducing the palladium and gold compounds of the impregnated support particles produced in step (b) to respective metals by adding the dried, impregnated support particles to an aqueous solution of hydrazine, whilst stirring, to form a slurry; (d) filtration of the slurry produced in step (c) to remove the excess reduction solution; (e) washing the filter cake/slurry produced in step (d) with water and removing excess water to form a cake; (f) impregnating the cake produced in step (e) with one or more salts of Group I, Group II, lanthanide and transition metals by blending the cake produced in step (e) with one or more solid salts of Group I, Group II, lanthanide and transition metals; and (g) drying the impregnated cake produced in step (f) whilst agitating the impregnated cake to form free-flowing catalyst particles.
Abstract:
A process for the preparation of a fluid bed vinyl acetate (VAM) catalyst comprising impregnating a support comprising a mixture of substantially inert microspheroidal particles with a solution comprising a metal salt of Pd and M, wherein M comprises Ba, Cd, Au, La, Nb, Ce, Zn, Pb, Ca, Sr, Sb or mixtures thereof, reducing the metal salts to form a deposit of Pd and M on the support surface and impregnating the support with at least one alkali metal salt. At least 50% of the particles used for the microspheroidal support have a particle size below 105 microns.
Abstract:
A process for the preparation of a fluid bed vinyl acetate (VAM) catalyst comprising impregnating a support comprising a mixture of substantially inert microspheroidal particles with a solution comprising a metal salt of Pd and M, wherein M comprises Ba, Cd, Au, La, Nb, Ce, Zn, Pb, Ca, Sr, Sb or mixtures thereof, reducing the metal salts to form a deposit of Pd and M on the support surface and impregnating the support with at least one alkali metal salt. At least 50% of the particles used for the microspheroidal support have a particle size below 105 microns.
Abstract:
A catalytically active material useful to prepare vinyl acetate monomer from ethylene, acetic acid, and an oxygen-containing gas under fluid bed conditions comprises a porous microspheroidal support containing catalytically active palladium crystallites finely dispersed within the support. This catalyst material does not require incorporation of gold to maintain activity and selectivity. A process to produce a vinyl acetate fluid bed catalyst in which catalytically active small palladium crystallites are finely dispersed within the support comprises dispersing selected metal species within the support which have an affinity to palladium to form very fine crystallites of palladium. The affinity metal species may be dispersed by impregnation onto a preformed microspheroidal support or may be intimately incorporated within the support before impregnation with a soluble palladium species.
Abstract:
Process for the production of vinyl acetate in which ethylene, acid and oxygen-containing gas are combined at elevated temperature in the presence of a catalyst material to produce (i) a product mixture comprising vinyl acetate, (ii) a liquid by-product comprising acetic acid and (iii) a gaseous by-product comprising carbon dioxide. The liquid by-product is separated from the product mixture and treated to reduce the water content therein before being recycled to the reactor such that the water entering the reactor comprises less than 6 wt %, (preferably less than 4 wt %, more preferably less than 3 wt %) of the total of acetic acid and water entering the reactor.
Abstract:
A catalytically active material useful to prepare vinyl acetate monomer from ethylene, acetic acid, and an oxygen-containing gas under fluid bed conditions comprises a porous microspheroidal support containing catalytically active palladium crystallites finely dispersed within the support. This catalyst material does not require incorporation of gold to maintain activity and selectivity. A process to produce a vinyl acetate fluid bed catalyst in which catalytically active small palladium crystallites are finely dispersed within the support comprises dispersing selected metal species within the support which have an affinity to palladium to form very fine crystallites of palladium. The affinity metal species may be dispersed by impregnation onto a preformed microspheroidal support or may be intimately incorporated within the support before impregnation with a soluble palladium species.
Abstract:
In a process for the liquid phase carbonylation of an alkyl alcohol such as methanol, and/or a reactive derivative thereof to produce the corresponding carboxylic acid and/or ester, in the presence of an iridium catalyst, an alkyl halide and water, the reaction is promoted by the presence of at least one promoter selected from cadmium, mercury, zinc, gallium, indium and tungsten, optionally with a co-promoter selected from ruthenium, osmium and rhenium.
Abstract:
Process for preparing a supported metal catalyst composition comprising impregnating support particles having a mean diameter of greater than 300 microns with a solution of least one catalytically active metal, or precursor thereof, such that the metal, or its precursor, is in a mobile state in the support particles; and drying the impregnated support particles. The mobile metal, or its precursor, in the support particles is then treated with a liquid comprising at least one reducing agent to deposit and immobilize the metal, or its precursor, in the support particles such that the metal, or its precursor, is distributed in the support particle in a layer below the surface of the support particle, the layer being between an inner and an outer region, each of the inner and outer regions having a lower concentration of the metal or precursor than the layer.
Abstract:
Composition and process for making same in which the composition includes support particles having at least one catalytically active metal or precursor thereof distributed therein in a layer below the surface of the particle. The layer is located between an inner and an outer region of the support particle, and each of the inner and outer regions has a lower concentration of the metal or precursor thereof than the layer.
Abstract:
A process for preparing a supported metal catalyst composition which comprises impregnating microspheroidal support particles with a solution of at least one catalytically active metal, or precursor, drying the impregnated support particles and then treating the mobile metal, or precursor in a mobile state with a liquid comprising at least one reducing agent to deposit and immobilize the metal, or its precursor, in the support particles such that the metal, or its precursor, is distributed in the support particle in a layer below the surface of the support particle, the layer being between an inner and an outer region having a lower concentration of metal or precursor. Also, a composition comprising microspheroidal support particles having at least one catalytically active metal or precursor thereof distributed in a layer below the surface of the particles, the layer being between an inner and an outer region of the support particle each having a lower concentration of metal or precursor.