Abstract:
An apparatus for conducting heat from a computer component to a heat sink. The invention may include a thermal interface material (TIM). The invention may further include a seal or gasket that at least partially encloses the TIM. The gasket may facilitate retaining the TIM within its sidewall, and thus in place on or near a computer component. Generally, the gasket may be placed between the computer component (or a silicon board or other material upon which the computer component is located) and a heat sink. An insert may be placed within the gasket and define an aperture. The chip seats in the aperture and thus is spatially located with respect to the insert. The TIM abuts both the computer component and a heat sink. A desiccant may be located within the gasket and absorb any moisture diffusing or migrating through the gasket.
Abstract:
The present invention is a computer controlled display device. In one embodiment, the display device includes a flat panel display having an input for receiving display data. Additionally, a moveable assembly may be coupled to the display. The moveable assembly may provide at least three degrees of freedom of movement for the flat panel display device. Additionally, the moveable assembly may have a cross-sectional area, which is substantially less than a cross-sectional area of a display structure of the flat panel display. Additionally, the moveable assembly may include a plurality of stacked ball-and-socket assemblies.
Abstract:
The present invention is a computer controlled display device. In one embodiment, the display device includes a flat panel display having an input for receiving display data. Additionally, a moveable assembly may be coupled to the display. The moveable assembly may provide at least three degrees of freedom of movement for the flat panel display device. Additionally, the moveable assembly may have a cross-sectional area, which is substantially less than a cross-sectional area of a display structure of the flat panel display.
Abstract:
The present invention is a computer controlled display device. In one embodiment, the display device includes a flat panel display having an input for receiving display data. Additionally, a moveable assembly may be coupled to the display. The moveable assembly may provide at least three degrees of freedom of movement for the flat panel display device. Additionally, the moveable assembly may have a cross-sectional area, which is substantially less than a cross-sectional area of a display structure of the flat panel display.
Abstract:
A computer-controlled display device. In one embodiment, the display device includes a flat panel display coupled to one end of a moveable assembly. A base containing computer components is coupled to an opposite end of the moveable assembly. Power and data cables linking the flat panel display to one or more of the computer components are positioned within an interior portion of the moveable assembly. In one embodiment, the moveable assembly includes a first arm coupled to a second arm and provides movement in two or more dimensions simultaneously.
Abstract:
The present invention is a computer controlled display device. In one embodiment, the display device includes a flat panel display having an input for receiving display data. Additionally, a moveable assembly may be coupled to the display. The moveable assembly may provide at least three degrees of freedom of movement for the flat panel display device. Additionally, the moveable assembly may have a cross-sectional area, which is substantially less than a cross-sectional area of a display structure of the flat panel display.
Abstract:
The present invention is a computer controlled display device. In one embodiment, the display device includes a flat panel display having an input for receiving display data. Additionally, a moveable assembly may be coupled to the display. The moveable assembly may provide at least three degrees of freedom of movement for the flat panel display device. Additionally, the moveable assembly may have a cross-sectional area, which is substantially less than a cross-sectional area of a display structure of the flat panel display. Additionally, the moveable assembly may include a plurality of stacked ball-and-socket assemblies.
Abstract:
Systems and methods are provided for electroforming a dome for use in a dome switch. A mandrel having several dome shapes incorporated in a planar surface is provided. The mandrel can serve as a cathode in an electroforming process to construct a sheet of domes, for example by enabling the deposition of a sheet of nickel on the mandrel. The domes can be singulated from the sheet for use as part of dome switches. The electroforming process may ensure that the domes have a uniform thickness and no internal stresses that may affect the performance of the domes.
Abstract:
An apparatus for a flat panel is disclosed. The apparatus comprises a flat panel assembly and a hinge mechanism coupled to the flat panel assembly. The hinge mechanism is adaptable to an industry standard mount and a non-industry standard mount. A system and method in accordance with the present invention allows for the replacement of a non-VESA standard compatible display mount with a display mount that is compatible with the VESA standard. Utilizing the system and method in accordance with the present invention, such a replacement can be accomplished with minimal effort, and in an efficient manner.
Abstract:
A computer controlled display device. In one embodiment, the computer controlled display device includes a flat panel display having an input for receiving data and a moveable assembly coupled to the display. A motor may be operatively coupled to a tension device disposed within the moveable assembly. The motor applies a force to the tension device to suspend movement of the moveable assembly, and also releases the force to permit movement of said moveable assembly.