Local item extraction
    1.
    发明授权
    Local item extraction 有权
    本地项目提取

    公开(公告)号:US07831438B2

    公开(公告)日:2010-11-09

    申请号:US11024765

    申请日:2004-12-30

    IPC分类号: G06Q99/00

    摘要: A system identifies a document that includes an address and locates business information in the document. The system assigns a confidence score to the business information, where the confidence score relates to a probability that the business information is associated with the address. The system determines whether to associate the business information with the address based on the assigned confidence score.

    摘要翻译: 系统识别包含地址的文档,并在文档中查找业务信息。 该系统为业务信息分配置信度分数,其中置信度分数与业务信息与该地址相关联的概率相关。 系统根据分配的置信度得分确定是否将业务信息与地址相关联。

    Methods and apparatus for rapid acoustic unit selection from a large speech corpus
    2.
    发明授权
    Methods and apparatus for rapid acoustic unit selection from a large speech corpus 有权
    用于从大型语音语料库中快速声学单元选择的方法和装置

    公开(公告)号:US06701295B2

    公开(公告)日:2004-03-02

    申请号:US10359171

    申请日:2003-02-06

    IPC分类号: G10L1306

    CPC分类号: G10L13/07

    摘要: A speech synthesis system can select recorded speech fragments, or acoustic units, from a very large database of acoustic units to produce artificial speech. The selected acoustic units are chosen to minimize a combination of target and concatenation costs for a given sentence. However, as concatenation costs, which are measures of the mismatch between sequential pairs of acoustic units, are expensive to compute, processing can be greatly reduced by pre-computing and caching the concatenation costs. Unfortunately, the number of possible sequential pairs of acoustic units makes such caching prohibitive. However, statistical experiments reveal that while about 85% of the acoustic units are typically used in common speech, less than 1% of the possible sequential pairs of acoustic units occur in practice. A method for constructing an efficient concatenation cost database is provided by synthesizing a large body of speech, identifying the acoustic unit sequential pairs generated and their respective concatenation costs, and storing those concatenation costs likely to occur. By constructing a concatenation cost database in this fashion, the processing power required at run-time is greatly reduced with negligible effect on speech quality.

    摘要翻译: 语音合成系统可以从声学单元的非常大的数据库中选择记录的语音片段或声学单元,以产生人造语音。 选择的声学单元被选择以最小化给定句子的目标和级联成本的组合。 然而,由于级联成本(即连续的声单元对之间的不匹配度量)是计算成本高的,所以可以通过预先计算和缓存级联成本大大降低处理能力。 不幸的是,可能的顺序对声学单元的数量使得这种高速缓存变得过高。 然而,统计学实验表明,虽然约85%的声学单位通常用于通用语音,但在实践中小于1%的可能顺序的声学单元对出现。 通过合成大量语音,识别产生的声学单元序列对及其各自的级联成本,并且存储可能发生的级联成本,提供了一种用于构建有效级联成本数据库的方法。 通过以这种方式构建级联成本数据库,运行时所需的处理能力大大降低,对语音质量的影响可以忽略不计。

    Method and apparatus for rapid acoustic unit selection from a large speech corpus
    3.
    发明授权
    Method and apparatus for rapid acoustic unit selection from a large speech corpus 有权
    用于从大语音语料库中快速声学单元选择的方法和装置

    公开(公告)号:US06697780B1

    公开(公告)日:2004-02-24

    申请号:US09557146

    申请日:2000-04-25

    IPC分类号: G10L1304

    CPC分类号: G10L13/07

    摘要: A speech synthesis system can select recorded speech fragments, or acoustic units, from a very large database of acoustic units to produce artificial speech. The selected acoustic units are chosen to minimize a combination of target and concatenation costs for a given sentence. However, as concatenation costs, which are measures of the mismatch between sequential pairs of acoustic units, are expensive to compute, processing can be greatly reduced by pre-computing and caching the concatenation costs. Unfortunately, the number of possible sequential pairs of acoustic units makes such caching prohibitive. However, statistical experiments reveal that while about 85% of the acoustic units are typically used in common speech, less than 1% of the possible sequential pairs of acoustic units occur in practice. A method for constructing an efficient concatenation cost database is provided by synthesizing a large body of speech, identifying the acoustic unit sequential pairs generated and their respective concatenation costs, and storing those concatenation costs likely to occur. By constructing a concatenation cost database in this fashion, the processing power required at run-time is greatly reduced with negligible effect on speech quality.

    摘要翻译: 语音合成系统可以从声学单元的非常大的数据库中选择记录的语音片段或声学单元,以产生人造语音。 选择的声学单元被选择以最小化给定句子的目标和级联成本的组合。 然而,由于级联成本(即连续的声单元对之间的不匹配度量)是计算成本高的,所以可以通过预先计算和缓存级联成本大大降低处理能力。 不幸的是,可能的顺序对声学单元的数量使得这种高速缓存变得过高。 然而,统计学实验表明,虽然约85%的声学单位通常用于通用语音,但在实践中小于1%的可能顺序的声学单元对出现。 通过合成大量语音,识别产生的声学单元序列对及其各自的级联成本,并且存储可能发生的级联成本,提供了一种用于构建有效级联成本数据库的方法。 通过以这种方式构建级联成本数据库,运行时所需的处理能力大大降低,对语音质量的影响可以忽略不计。

    Fully expanded context-dependent networks for speech recognition
    4.
    发明授权
    Fully expanded context-dependent networks for speech recognition 有权
    用于语音识别的完全扩展的上下文相关网络

    公开(公告)号:US06574597B1

    公开(公告)日:2003-06-03

    申请号:US09502501

    申请日:2000-02-11

    IPC分类号: G10L1500

    摘要: A large vocabulary speech recognizer including a combined weighted network of transducers reflecting fully expanded context-dependent modeling of pronunciations and language that can be used with a single-pass Viterbi or other coder based on sequences of labels provided by feature analysis of input speech.

    摘要翻译: 一种大的词汇语音识别器,包括一组基于传输器的组合加权网络,它们反映完全扩展的语音相关建模,可根据输入语音特征分析提供的标签序列与单遍维特比或其他编码器一起使用。

    Systems and methods for determining the N-best strings

    公开(公告)号:US08527273B2

    公开(公告)日:2013-09-03

    申请号:US13562022

    申请日:2012-07-30

    IPC分类号: G10L15/00 G10L15/14 G10L15/18

    CPC分类号: G10L15/00 G10L2015/085

    摘要: Systems and methods for identifying the N-best strings of a weighted automaton. A potential for each state of an input automaton to a set of destination states of the input automaton is first determined. Then, the N-best paths are found in the result of an on-the-fly determinization of the input automaton. Only the portion of the input automaton needed to identify the N-best paths is determinized. As the input automaton is determinized, a potential for each new state of the partially determinized automaton is determined and is used in identifying the N-best paths of the determinized automaton, which correspond exactly to the N-best strings of the input automaton.

    Local item extraction
    6.
    发明授权
    Local item extraction 有权
    本地项目提取

    公开(公告)号:US08433704B2

    公开(公告)日:2013-04-30

    申请号:US12888925

    申请日:2010-09-23

    IPC分类号: G06F17/30

    摘要: A system identifies a document that includes an address and locates business information in the document. The system assigns a confidence score to the business information, where the confidence score relates to a probability that the business information is associated with the address. The system determines whether to associate the business information with the address based on the assigned confidence score.

    摘要翻译: 系统识别包含地址的文档,并在文档中查找业务信息。 该系统为业务信息分配置信度分数,其中置信度分数与业务信息与该地址相关联的概率相关。 该系统基于所分配的置信度分数确定是否将业务信息与地址相关联。

    Systems and methods for determining the N-best strings
    7.
    发明授权
    Systems and methods for determining the N-best strings 失效
    用于确定N最佳字符串的系统和方法

    公开(公告)号:US08234115B2

    公开(公告)日:2012-07-31

    申请号:US10301098

    申请日:2002-11-21

    IPC分类号: G10L15/00 G10L15/14 G10L15/18

    CPC分类号: G10L15/00 G10L2015/085

    摘要: Systems and methods for identifying the N-best strings of a weighted automaton. A potential for each state of an input automaton to a set of destination states of the input automaton is first determined. Then, the N-best paths are found in the result of an on-the-fly determinization of the input automaton. Only the portion of the input automaton needed to identify the N-best paths is determinized. As the input automaton is determinized, a potential for each new state of the partially determinized automaton is determined and is used in identifying the N-best paths of the determinized automaton, which correspond exactly to the N-best strings of the input automaton.

    摘要翻译: 用于识别加权自动机的N最佳字符串的系统和方法。 首先确定输入自动机的每个状态到输入自动机的一组目的地状态的电位。 然后,在输入自动机的动态确定的结果中找到N个最佳路径。 确定需要识别N个最佳路径的输入自动机的部分。 当确定输入自动机时,确定部分确定的自动机的每个新状态的潜力,并用于识别确定的自动机的N个最佳路径,其精确地对应于输入自动机的N个最佳弦。

    Confusable word detection in speech recognition
    8.
    发明授权
    Confusable word detection in speech recognition 失效
    语音识别中的混淆词检测

    公开(公告)号:US5737723A

    公开(公告)日:1998-04-07

    申请号:US297283

    申请日:1994-08-29

    CPC分类号: G10L15/187

    摘要: A speech recognition system may be trained with data that is independent from previous acoustics. This method of training is quicker and more cost effective than previous training methods. In training the system, after a vocabulary word is input into the system, a first set of phonemes representative of the vocabulary word is determined. Next, the first set of phonemes is compared with a second set of phonemes representative of a second vocabulary word. The first vocabulary word and the second vocabulary word are different. The comparison generates a confusability index. The confusability index for the second word is a measure of the likelihood that the second word will be mistaken as another vocabulary word, e.g., the first word, already in the system. This process may be repeated for each newly desired vocabulary word.

    摘要翻译: 可以用独立于先前声学的数据训练语音识别系统。 这种培训方法比以前的培训方法更快,更具成本效益。 在训练系统时,在将词汇单词输入到系统中之后,确定表示词汇单词的第一组音素。 接下来,将第一组音素与表示第二词汇单词的第二组音素进行比较。 第一个词汇单词和第二个词汇单词是不同的。 比较产生混淆指数。 第二个单词的混淆指数是​​第二个单词将被误认为已经在系统中的另一个词汇单词(例如第一个单词)的可能性的量度。 可以针对每个新期望的词汇单词重复该过程。

    Systems and methods for identifying music in a noisy environment
    9.
    发明授权
    Systems and methods for identifying music in a noisy environment 有权
    在嘈杂环境中识别音乐的系统和方法

    公开(公告)号:US08965766B1

    公开(公告)日:2015-02-24

    申请号:US13421821

    申请日:2012-03-15

    IPC分类号: G10L15/04 G06F17/30

    CPC分类号: G06F17/3074 G06F17/30743

    摘要: Systems and methods for identifying music in a noisy environment are described. One of the methods includes receiving audio segment data. The audio segment data is generated from the portion that is captured in the noisy environment. The method further includes generating feature vectors from the audio segment data, identifying phonemes from the feature vectors, and comparing the identified phonemes with pre-assigned phoneme sequences. Each pre-assigned phoneme sequence identifies a known music piece. The method further includes determining an identity of the music based on the comparison.

    摘要翻译: 描述了用于在嘈杂环境中识别音乐的系统和方法。 其中一种方法包括接收音频段数据。 音频段数据是从在嘈杂环境中捕获的部分生成的。 该方法还包括从音频段数据生成特征向量,从特征向量识别音素,以及将所识别的音素与预分配的音素序列进行比较。 每个预先配置的音素序列识别已知的乐曲。 该方法还包括基于比较来确定音乐的身份。

    METHODS AND APPARATUS FOR RAPID ACOUSTIC UNIT SELECTION FROM A LARGE SPEECH CORPUS
    10.
    发明申请
    METHODS AND APPARATUS FOR RAPID ACOUSTIC UNIT SELECTION FROM A LARGE SPEECH CORPUS 有权
    从大型语音科学选择快速声学单元的方法和装置

    公开(公告)号:US20120136663A1

    公开(公告)日:2012-05-31

    申请号:US13306157

    申请日:2011-11-29

    IPC分类号: G10L13/00

    摘要: A speech synthesis system can select recorded speech fragments, or acoustic units, from a very large database of acoustic units to produce artificial speech. The selected acoustic units are chosen to minimize a combination of target and concatenation costs for a given sentence. However, as concatenation costs, which are measures of the mismatch between sequential pairs or acoustic units, are expensive to compute, processing can be greatly reduced by pre-computing and aching the concatenation costs. The number of possible sequential pairs of acoustic units makes such caching prohibitive. Statistical experiments reveal that while about 85% of the acoustic units are typically used in common speech, less than 1% of the possible sequential pairs or acoustic units occur in practice. The system synthesizes a large body of speech, identifies the acoustic unit sequential pairs generated and their respective concatenation costs, and stores those concatenation costs likely to occur.

    摘要翻译: 语音合成系统可以从声学单元的非常大的数据库中选择记录的语音片段或声学单元,以产生人造语音。 选择的声学单元被选择以最小化给定句子的目标和级联成本的组合。 然而,由于连接成本(即顺序对或声学单元之间的不匹配度量)计算成本高昂,因此可以通过预先计算和测量连接成本大大降低处理成本。 可能的顺序对声学单元的数量使得这种缓存变得过高。 统计实验表明,虽然约85%的声学单位通常用于通用语音,但是在实践中可能出现小于1%的可能的顺序对或声学单位。 该系统综合了大量语音,识别产生的声学单元顺序对及其各自的级联成本,并存储可能发生的这些级联成本。