Method for classifying multi-parameter data
    1.
    发明授权
    Method for classifying multi-parameter data 失效
    多参数数据分类方法

    公开(公告)号:US6014904A

    公开(公告)日:2000-01-18

    申请号:US962970

    申请日:1997-10-27

    Inventor: Michael D. Lock

    CPC classification number: G06K9/00147 G06K9/6218

    Abstract: A method for automatically classifying multi-parameter data into cluster groups for the purpose of defining different populations of particles in a sample by automatically defining a position of at least one variable position, geometric boundary surface on a two-dimensional scatter plot so as to enclose a group of the displayed particles in a data cluster; with the boundary surface having a polygonal shape defined by a plurality of vertices about at least one cell cluster created by building at least one histogram from cross sections of the two-dimensional scatter plot. Preferably, each cross section of the geometric boundary includes a rectangular, two dimensional gate. The method is particularly useful in the field of cellular analysis using, for example, flow cytometers wherein multi-parameter data is recorded for each cell that passes through an illumination and sensing region. In particular the method is especially useful for classifying and counting immunofluorescently labeled lymphocytes in blood samples from AIDS patients.

    Abstract translation: 一种用于通过自动定义二维散点图上的至少一个可变位置,几何边界表面的位置以包围样本中的多个参数数据到群集组中以定义样本中的不同粒子群的目的的方法 一组数据簇中显示的粒子; 其中边界表面具有由关于通过从二维散点图的横截面构建至少一个直方图而创建的至少一个单元簇的多个顶点限定的多边形形状。 优选地,几何边界的每个横截面包括矩形的二维门。 该方法在使用例如流式细胞仪的细胞分析领域中特别有用,其中针对通过照明和感测区域的每个细胞记录多参数数据。 特别地,该方法对于来自艾滋病患者的血液样品中的免疫荧光标记的淋巴细胞进行分类和计数特别有用。

    System for identifying clusters in scatter plots using smoothed polygons with optimal boundaries
    2.
    发明授权
    System for identifying clusters in scatter plots using smoothed polygons with optimal boundaries 有权
    使用具有最优边界的平滑多边形在散点图中识别簇的系统

    公开(公告)号:US06944338B2

    公开(公告)日:2005-09-13

    申请号:US09853037

    申请日:2001-05-11

    Abstract: An apparatus and method for identifying clusters in two-dimensional data by generating a two-dimensional histogram characterized by a grid of bins, determining a density estimate based on the bins, and identifying at least one cluster in the data. A smoothed density estimate is generated using a Gaussian kernel estimator algorithm. Clusters are identified by locating peaks and valleys in the density estimate (e.g., by comparing slope of adjacent bins). Boundaries (e.g., polygons) around clusters are identified using bins after bins are identified as being associated with a cluster. Boundaries can be simplified (e.g., by reducing the number of vertices in a polygon) to facilitate data manipulation.

    Abstract translation: 一种用于通过产生由特征为箱格的特征的二维直方图来确定二维数据中的簇的装置和方法,基于所述箱确定密度估计,以及识别所述数据中的至少一个簇。 使用高斯核估计算法生成平滑密度估计。 通过在密度估计中定位峰和谷(例如,通过比较相邻仓的斜率)来识别群集。 在将集群识别为与集群相关联的箱之后,使用箱子来识别在集群周围的边界(例如,多边形)。 可以简化边界(例如,通过减少多边形中的顶点数量)以便于数据操纵。

Patent Agency Ranking