Abstract:
An approach that manages energy in a data center is provided. In one embodiment, there is an energy management tool, including an analysis component configured to determine an energy profile of each of a plurality of systems within the data center. The energy management tool further comprises a priority component configured to prioritize a routing of a workload to a set of systems from the plurality of systems within the data center having the least amount of energy present based on the energy profile of each of the plurality of systems within the data center.
Abstract:
Scheduling cool air jobs in a data center comprising computers whose operations produce heat and require cooling, cooling resources that provide cooling for the data center, a workload controller that schedules and allocates data processing jobs among the computers, a cooling controller that schedules and allocates cooling jobs among cooling resources, including assigning data processing jobs for execution by computers in the data center; providing, to the cooling controller, information describing data processing jobs scheduled for allocation among the computers in the data center; specifying, by the cooling controller in dependence upon the physical location of the computer to which each job is allocated and the quantity of data processing represented by each job, cooling jobs to be executed by cooling resources; and assigning, by the cooling controller in accordance with the workload allocation schedule to cooling resources in the data center, cooling jobs for execution.
Abstract:
Scheduling cool air jobs in a data center comprising computers whose operations produce heat and require cooling, cooling resources that provide cooling for the data center, a workload controller that schedules and allocates data processing jobs among the computers, a cooling controller that schedules and allocates cooling jobs among cooling resources, including assigning data processing jobs for execution by computers in the data center; providing, to the cooling controller, information describing data processing jobs scheduled for allocation among the computers in the data center; specifying, by the cooling controller in dependence upon the physical location of the computer to which each job is allocated and the quantity of data processing represented by each job, cooling jobs to be executed by cooling resources; and assigning, by the cooling controller in accordance with the workload allocation schedule to cooling resources in the data center, cooling jobs for execution.
Abstract:
Embodiments described herein comprise a system and method for corroborative vehicle diagnostic. The corroborative vehicle diagnostic system allows a vehicle to detect a fault indicator experienced by a vehicle subsystem. The corroborative vehicle diagnostic system allows the vehicle to compare the fault indicator with similar and/or dissimilar conditions experienced by one or more additional vehicle located within a geographic region. A corroborative diagnostic controller compares the fault indicator with the conditions of the additional vehicle. Based on the comparison of the fault indicator with the condition, an error status of the fault indicator is determined. The error status may be that the vehicle subsystem has failed, that the vehicle subsystem has not failed and/or that the results are inconclusive. The corroborative diagnostic controller may communicate directly with a control system of the vehicle.
Abstract:
Scheduling cool air jobs in a data center comprising computers whose operations produce heat and require cooling, cooling resources that provide cooling for the data center, a workload controller that schedules and allocates data processing jobs among the computers, a cooling controller that schedules and allocates cooling jobs among cooling resources, including assigning data processing jobs for execution by computers in the data center; providing, to the cooling controller, information describing data processing jobs scheduled for allocation among the computers in the data center; specifying, by the cooling controller in dependence upon the physical location of the computer to which each job is allocated and the quantity of data processing represented by each job, cooling jobs to be executed by cooling resources; and assigning, by the cooling controller in accordance with the workload allocation schedule to cooling resources in the data center, cooling jobs for execution.
Abstract:
An approach that provides sharing of the same virtual space by a plurality of avatars in a virtual universe by grouping the avatars belonging the virtual space and isolating each group. In one embodiment, there is an isolating tool, including a grouping component configured to group each of the plurality of avatars belonging to defined virtual space according to predefined grouping criteria. The isolating tool further includes an isolating component configured to isolate each group within each of the plurality of virtual spaces based on the grouping.
Abstract:
An approach that manages energy in a data center is provided. In one embodiment, there is an energy management tool, including an analysis component configured to analyze an operating state of each of a plurality of systems within a data center to determine a set of systems from the plurality of systems within the data center that is currently using energy. The energy management tool further comprises a priority component configured to prioritize a routing of a workload to the set of systems from the plurality of systems within the data center that is currently using energy.
Abstract:
A method implemented in a computer infrastructure having computer executable code tangibly embodied on a computer readable medium being operable to perform a thermal analysis of a data center and overlay the thermal analysis on a map of the data center to provide an overlaid thermal analysis. Additionally, the computer executable code is operable to dynamically control at least one blower and at least one vent in the data center based on the overlaid thermal analysis to direct cool air to a section of the data center in need of cooling.
Abstract:
This invention provides a system or method to provide dynamically packaged Cloud services to customers via a Cloud services registry. The Cloud services registry is dynamic and operates by polling different Cloud service providers and Cloud service databases to ensure that the Cloud services registry is up to date with the latest available Cloud services. The Cloud services registry is available for queries from Cloud customers and abstracts multiple Cloud service providers. By abstracting the Cloud services, the dynamic Cloud services registry creates a modular package of different services from different Cloud service providers based on the query and requested priority for services. The dynamic Cloud registry is dynamically updated based on the level of services that the provider has available. The dynamic registry determines what service best matches the requirements from a Cloud service request (CSR) and returns a personalized set of matching services.
Abstract:
The present invention describes an approach for general management of a client desktop with respect to accessing Cloud services. Included are means for dynamically determining, viewing, organizing, and linking desktop objects to associated server side Cloud resources and services. Specifically, the present invention provides a mechanism whereby Cloud services can be automatically represented on a plurality of client systems (for example, laptops, desktops, PDAs, etc) complete with the ability for the underlying provider of those services to be dynamically mapped based on a user's profile. The user will see standard available services regardless of the provider.