摘要:
A method and system to provide an effective, scalable and yet low-cost solution for Confidentiality, Integrity and Replay protection for sensitive information stored in a memory and prevent an attacker from observing and/or modifying the state of the system. In one embodiment of the invention, the system has strong hardware protection for its memory contents via XTS-tweak mode of encryption where the tweak is derived based on “Global and Local Counters”. This scheme offers to enable die-area efficient Replay protection for any sized memory by allowing multiple counter levels and facilitates using small counter-sizes to derive the “tweak” used in the XTS encryption without sacrificing cryptographic strength.
摘要:
Systems, apparatuses, and methods, and for seamlessly protecting memory regions to protect against hardware-based attacks are disclosed. In one embodiment, an apparatus includes a decoder, control logic, and cryptographic logic. The decoder is to decode a transaction between a processor and memory-mapped input/output space. The control logic is to redirect the transaction from the memory-mapped input/output space to a system memory. The cryptographic logic is to operate on data for the transaction.
摘要:
Embodiments of apparatuses, articles, methods, and systems for secure vault service for software components within an execution environment are generally described herein. An embodiment includes the ability for a Virtual Machine Monitor, Operating System Monitor, or other underlying platform capability to restrict memory regions for access only by specifically authenticated, authorized and verified software components, even when part of an otherwise compromised operating system environment. The underlying platform to lock and unlock secrets on behalf of the authenticated/authorized/verified software component provided in protected memory regions only accessible to the authenticated/authorized/verified software component. Other embodiments may be described and claimed.
摘要:
In general, in one aspect, the disclosure describes a process that includes a cryptographic engine and first and second registers. The cryptographic engine is to encrypt data to be written to memory, to decrypt data read from memory, to generate read integrity check values (ICVs) and write ICVs for memory accesses. The cryptographic engine is also to create a cumulative read ICV and a cumulative write ICV by XORing the generated read ICV and the generated write ICV with a current read MAC and a current write ICV respectively and to validate data integrity by comparing the cumulative read ICV and the cumulative write ICV. The first and second registers are to store the cumulative read and write ICVs respectively at the processor. Other embodiments are described and claimed.
摘要:
Systems, apparatuses, and methods, and for seamlessly protecting memory regions to protect against hardware-based attacks are disclosed. In one embodiment, an apparatus includes a decoder, control logic, and cryptographic logic. The decoder is to decode a transaction between a processor and memory-mapped input/output space. The control logic is to redirect the transaction from the memory-mapped input/output space to a system memory. The cryptographic logic is to operate on data for the transaction.
摘要:
A processor includes a memory encryption engine that provides replay and confidentiality protections to a memory region. The memory encryption engine performs low-overhead parallelized tree walks along a counter tree structure. The memory encryption engine upon receiving an incoming read request for the protected memory region, performs a dependency check operation to identify dependency between the incoming read request and an in-process request and to remove the dependency when the in-process request is a read request that is not currently suspended.
摘要:
A method, device, and system are disclosed. In one embodiment the method includes receiving measured health information from a client on a key distribution server. Once the measured health information is received the server is capable of validating the measured health information to see if it is authentic. The server is also capable of sending a session key to the client when the measured health information is validated. When the client receives the session key, the client is capable of initiating an encrypted and authenticated connection with an application server in the domain using the session key.
摘要:
A method, device, and system are disclosed. In one embodiment the method includes receiving measured health information from a client on a key distribution server. Once the measured health information is received the server is capable of validating the measured health information to see if it is authentic. The server is also capable of sending a session key to the client when the measured health information is validated. When the client receives the session key, the client is capable of initiating an encrypted and authenticated connection with an application server in the domain using the session key.
摘要:
A method and apparatus to define multiple zones in a data packet for inclusion in processing by security operations of a security protocol. In one embodiment, each defined zone has an associated list of security operations to which the zone is subjected. In another embodiment, the list of security operations for a zone includes parameters to be passed when performing the security operations on the zone.
摘要:
Methods and apparatus are disclosed to provide for security within a network enclave. In one embodiment authentication logic initiates authentication with a central network authority. Packet processing logic receives a key and an identifier from the central network authority. Security protocol logic then establishes a client-server security association through a communication that includes a client identifier and an encrypted portion and/or an authorization signature, wherein a client authorization key allocated by the central network authority can be reproduced by a server, other than said central network authority, from the client identifier and a derivation key provided to the server by the central network authority to decrypt the encrypted portion and/or to validate the communication using the authorization signature. The server may also provide the client with new session keys and/or new client session identifiers using server-generated derivation keys if desired, protecting these with the client authorization key.