Abstract:
The invention relates to a shell and tube heat exchanger (1) having a helical tube bundle (10) within a shell (20), that defines a shell space (200) surrounding the tube bundle (10). The tubes are helically coiled about a core pipe (100) in such a manner that there is formed at least one first section (11) and at least one second section (12), separate from the first section, that surrounds the first section (11). The two sections (11, 12) have in each case at least one associated inlet (E, E′) such that the two sections (11, 12) are able to be charged separately with the first medium.
Abstract:
The invention relates to a heat exchanger (1) for indirect heat exchange comprising a tube bundle (10), formed from a plurality of tubes helically coiled around a core tube (100), for receiving a first medium, a shell (20). which encloses the tube bundle (10) and defines a shell space (200) surrounding the tube bundle (10), for receiving a second medium, and a liquid distributor (40) for distributing in the shell space (200) a stream (S), conveyed in the shell space (200), of the second medium in the form of a liquid (F). According to the invention a control device (33) for controlling distribution in the shell space (200) of an additional, further stream (S′) of liquid (F), and/or for controlling distribution of stream (S) of liquid (F) in the shell space (200).
Abstract:
The invention relates to a heat exchanger (1) having a tube bundle (10) with a large number of tubes wound around a central pipe (100), a shell (20) enclosing the tube bundle (10) and defining a shell space (200) surrounding the tube bundle (10), and a liquid distributor (30) having distributor arms (300) for distributing a liquid (F) into the shell space (200) and onto the tube bundle (10), and drain pipes (340) for supplying the distributor arms with liquid (F). The distributor arms (300) are connected in a flow-guiding manner to a ring channel (400) positioned along the periphery of the shell (20). For degassing liquid (F), central pipe (100) is connected in a flow-guiding manner to the distributor arms (300).
Abstract:
A wound heat exchanger is disclosed. The heat exchanger includes a plurality of tubes which are wound in several concentric tube layers about a central tube, and a container cover which defines an external chamber about the tube. A first anti-drumming wall is shaped as a cylinder cover or a cylinder cover segment and is arranged on the external side of a first layer of tubes.
Abstract:
The invention relates to a heat exchanger system (1) for heat exchange between at least a first medium (M), in particular in the form of a hydrocarbon-rich phase, and a second medium (K), with at least first and second pipe space sections (101, 103; 103, 105) for accommodating the first medium (M), and with a first pipe space section connecting means (102; 104), via which the two pipe space sections (101, 103; 103, 105) are connected to one another in a flow-guiding manner. The first pipe space section (101; 103) is surrounded by a first shell space (201, 203), and the second pipe space section (103; 105) is surrounded by a second shell space (203, 205) for accommodating the second medium (K). The first shell space (201; 203) is defined by a first shell (301; 303) and the second shell space (203; 205) is defined by a second shell (303; 305).
Abstract:
A process for liquefying a tube side stream in a main heat exchanger is described. The process comprises the steps of: a) providing a first mass flow to the warm end of a first subset of individual tubes, b) providing a second mass flow to the warm end of a second subset of individual tubes, c) evaporating a refrigerant stream on the shell side; d) measuring an exit temperature of the first mass flow; e) measuring an exit temperature of the second mass flow; and, f) comparing the exit temperature of the first mass flow measured in step d) to the exit temperature of the second mass flow measured in step e), the process characterized in that at least one of the first and second mass flows is adjusted to equalise the exit temperature of the first mass flow with the exit temperature of the second mass flow.
Abstract:
A process for cooling a tube side stream in a main heat exchanger is described. The process comprises: a) supplying a first mass flow of a tube side stream to a first zone of individual tubes in the tube bundle; b) supplying a second mass flow of the tube side stream to a second zone of individual tubes in the tube bundle, the second zone being offset from the first zone; c) supplying a refrigerant stream on the shell side for cooling the first and second mass flows; d) removing the evaporated refrigerant stream from the warm end of the main heat exchanger; and, e) adjusting the first mass flow of the tube side stream relative to the second mass flow of the tube side stream to maximise the temperature of the removed evaporated refrigerant stream.
Abstract:
The invention relates to a shell and tube heat exchanger (1) having a helical tube bundle (10) within a shell (20), that defines a shell space (200) surrounding the tube bundle (10). The tubes are helically coiled about a core pipe (100) in such a manner that there is formed at least one first section (11) and at least one second section (12), separate from the first section, that surrounds the first section (11). The two sections (11, 12) have in each case at least one associated inlet (E, E′) such that the two sections (11, 12) are able to be charged separately with the first medium.
Abstract:
The invention relates to a heat exchanger system (1) for heat exchange between at least a first medium (M), in particular in the form of a hydrocarbon-rich phase, and a second medium (K), with at least first and second pipe space sections (101, 103; 103, 105) for accommodating the first medium (M), and with a first pipe space section connecting means (102; 104), via which the two pipe space sections (101, 103; 103, 105) are connected to one another in a flow-guiding manner. The first pipe space section (101; 103) is surrounded by a first shell space (201, 203), and the second pipe space section (103; 105) is surrounded by a second shell space (203, 205) for accommodating the second medium (K). The first shell space (201; 203) is defined by a first shell (301; 303) and the second shell space (203; 205) is defined by a second shell (303; 305).
Abstract:
A process for cooling a tube side stream in a main heat exchanger is described. The process comprises: a) supplying a first mass flow of a tube side stream to a first zone of individual tubes in the tube bundle; b) supplying a second mass flow of the tube side stream to a second zone of individual tubes in the tube bundle, the second zone being offset from the first zone; c) supplying a refrigerant stream on the shell side for cooling the first and second mass flows; d) removing the evaporated refrigerant stream from the warm end of the main heat exchanger; and, e) adjusting the first mass flow of the tube side stream relative to the second mass flow of the tube side stream to maximise the temperature of the removed evaporated refrigerant stream.