摘要:
A set of values corresponding to measured parameters of the output peaks resulting from the correlation of the received data with a synchronization code stored in the receiver are saved to a peak buffer. Subsequent transmissions of the synchronization data are similarly correlated in the receiver and the results stored as assigned values in further peak buffers. The contents of the peak buffers are then regrouped according to their positional entries. A ranking is computed from the values assigned for each position and the positions with the highest ranking are selected for slot timing.
摘要:
A method and apparatus provided for adjusting reference frequency iteratively in a receiver. Received data is correlated with a locally stored synchronization code and the peak correlation value is detected. In a first run-through this will be stored in a local peak correlation store. The frequency is then adjusted by a predetermined step and the process performed again, with the peak correlation value detected being compared with the peak in the local store. If the new peak is larger then that frequency step is saved and a further frequency step applied. If the new correlation peak is smaller than the previously stored peak then the frequency step applied to derive that new peak is removed and a smaller frequency step applied. This process continues for a succession of decreasing frequency steps until all the stored frequency steps have been used up, at which point the local oscillator frequency is adjusted and the receiver continues with the cell search process.
摘要:
Systems and methods described herein are directed to extending a range of operation of a remote imaging system including a Light Detection and Ranging (LIDAR) system. Example embodiments describe delaying a locally generated reference signal in time with respect to an outgoing LIDAR signal. By delaying the reference signal, the system can effectively increase a maximum range of target detection while maintaining the accuracy of target detection. In some embodiments, by delaying the reference signal, the system may be able to reduce the effects of phase noise and chirp non-linearities on the beat signal and effectively improve the signal-to-noise ratio. As such, the maximum range of operation of the system may be increased while maintaining highly accurate estimations of target depth and/or velocity.
摘要:
Systems and methods described herein are directed to computationally fast and accurate processing of data acquired by a remote imaging system, such as a Light Detection and Ranging system (LIDAR). Example embodiments describe processing of scanned target data based on performing a low-resolution Fourier Transform (FT) of a beat signal that may be a function of distance and/or velocity of objects associated with the scanned target. Various methods described herein can effectively convert the low-resolution FT data into high-resolution frequency domain data that can be used to accurately estimate a frequency of the beat signal. The system may use the beat signal frequency to determine the distance and/or velocity of the corresponding object and generate point-cloud information associated with a three-dimensional image construction of the scanned target.
摘要:
A device includes a first adjustment unit which is configured to adjust a power of a first carrier signal, and a second adjustment unit configured to adjust a power of a second carrier signal. The first adjustment unit is configured to adjust the first carrier signal power based on a maximum allowable imbalance between the first carrier signal power and the second carrier signal power. A method for controlling a transmit power in a user equipment of a radio communications system includes calculating in the user equipment first carrier signal power and a second carrier signal power. The method further includes adjusting in the user equipment the calculated transmit power for at least one out of the first carrier signal and the second carrier signal based on the maximum allowable power imbalance between the first carrier signal power and the second carrier signal power.
摘要:
A device includes a first adjustment unit which is configured to adjust a power of a first carrier signal, and a second adjustment unit configured to adjust a power of a second carrier signal. The first adjustment unit is configured to adjust the first carrier signal power based on a maximum allowable imbalance between the first carrier signal power and the second carrier signal power. A method for controlling a transmit power in a user equipment of a radio communications system includes calculating in the user equipment first carrier signal power and a second carrier signal power. The method further includes adjusting in the user equipment the calculated transmit power for at least one out of the first carrier signal and the second carrier signal based on the maximum allowable power imbalance between the first carrier signal power and the second carrier signal power.
摘要:
A method of estimating the difference in frequency between base station transmissions received over a radio channel and a locally generated carrier frequency in a mobile receiver. The differential phase shifts imparted to different parts of a received synchronization code because of a frequency offset of the local reference oscillator are detected in the receiver. A series of partial correlations of the received synchronization code over a single transmission slot allows detection of the differential phase shifts. Signal to noise ratios may be improved by means of a series of overlapping partial correlations. The period over which the correlations are performed is much less than the coherence time of the radio channel.
摘要:
The present invention relates to a method and apparatus for correcting frequency offset of a local oscillator in a direct sequence spread spectrum receiver such as Universal Mobile Telecommunications System (UMTS). Received signals comprise a plurality of sequential slots of data. At least one of these includes synchronization data. A correlation is performed between this received data and a locally stored synchronization code. Subsequently, the received data is phase adjusted and a further correlation performed between the phase adjusted data and the locally stored synchronization code. The strongest correlation peak is then determined and a phase offset to be applied to the local oscillator is estimated from the phase adjustment required to produce the strongest peak. This is subsequently applied to the local oscillator.
摘要:
A method and apparatus for acquiring slot timing and frequency offset correction of a local oscillator, provided for use in a direct sequence spread spectrum receiver. The received signals in such a system comprise a plurality of sequential slots of data. Some of these comprise synchronization data. At least two different correlations are performed at a receiver between the received data and a locally stored synchronization code. These are compared to determine which give the strongest correlation peak and the timing of this peak is then stored. The offset to be applied to a local oscillator in the receiver is then estimated from this time and subsequently applied to the local oscillator.