Abstract:
A method and apparatus are provided for the manipulation of a sleeve onto and off of a cylinder. A sleeve mounted on a handling shaft is equipped with a substantially airtight slideable end cap at its distal end. During mounting, axial alignment is provided when the handling shaft is engaged with the free end of the cylinder. A plurality of apertures on the cylinder's exterior surface conduct pressurized air, which expands the sleeve by exerting radial fluid pressure on its inside surface. A vacuum source actively evacuates the air from the sleeve's interior drawing the sleeve onto the cylinder. To remove the sleeve fluid pressure is reasserted exerting an axial force against the substantially airtight end cap. An auxiliary air supply is selectively activated to aid in sleeve removal.
Abstract:
Examples of a pressure wave generator configured to generate high energy pressure waves in a medium are disclosed. The pressure wave generator can include a movable piston with a guide through which a piston control rod can move or slide. The pressure wave generator can include a transducer coupled to a medium. During an impact of the piston on the transducer, the control rod can slide in the guide, which can reduce stress on the rod. The pressure wave generator can include a damper to decelerate the control rod, independently of the piston. Impact of the piston on the transducer transfers a portion of the piston's kinetic energy into the medium thereby generating pressure waves in the medium. A piston driving system may be used to provide precise and controlled launching or movement of the piston. Examples of methods of operating the pressure wave generator are disclosed.
Abstract:
Embodiments of systems and methods for compressing plasma are disclosed in which plasma can be compressed by impact of a projectile on a magnetized plasma in a liquid metal cavity. The projectile can melt in the liquid metal cavity, and liquid metal may be recycled to form new projectiles.
Abstract:
The present invention provides a method for the quiet, contactless handling of objects using pickup devices of the Bernoulli type. The method is particularly suitable for the contactless handling of items much larger than an individual pickup, for example the handling of lithographic printing plates. According to the method of the present invention, a flow of fluid is established between the pickup face of the Bernoulli pickup and the surface of the object to be supported. The fluid is made to flow over a laminar flow surface at a velocity sufficient to produce a pressure differential between the flowing fluid and a surrounding fluid medium. Bernoulli lift is maximized by making the laminar flow surface as smooth and protrusionúfree as possible, and by ensuring that the location and extent of the laminar flow surface substantially coincides with the maximal lateral limits of the low-pressure zone between the pickup face and the opposing object surface. As the pickup fluid flows beyond the periphery of the laminar flow surface, it flows over a vibrationúattenuating surface, reducing unwanted vibrations in the object.
Abstract:
An apparatus for removing slip sheets from printing plates has two concentric cylinders that are mutually rotatable about a common axis. Suction exerted via two elongated slots separates a deformable sheet from a relatively rigid object to which it is adhered. The deformable sheet is drawn into a recess presented by the two aligned slots. The concentric cylinders are then rotated to grip the deformable sheet between opposing edges of the slots.
Abstract:
Examples of a pressure wave generator configured to generate high energy pressure waves in a medium are disclosed. The pressure wave generator can include a movable piston with a guide through which a piston control rod can move or slide. The pressure wave generator can include a transducer coupled to a medium. During an impact of the piston on the transducer, the control rod can slide in the guide, which can reduce stress on the rod. The pressure wave generator can include a damper to decelerate the control rod, independently of the piston. Impact of the piston on the transducer transfers a portion of the piston's kinetic energy into the medium thereby generating pressure waves in the medium. A piston driving system may be used to provide precise and controlled launching or movement of the piston. Examples of methods of operating the pressure wave generator are disclosed.
Abstract:
Embodiments of systems and methods for compressing plasma are disclosed in which plasma can be compressed by impact of a projectile on a magnetized plasma in a liquid metal cavity. The projectile can melt in the liquid metal cavity, and liquid metal may be recycled to form new projectiles.
Abstract:
A method and apparatus are provided for the manipulation of a sleeve onto and off of a cylinder. A sleeve mounted on a handling shaft is equipped with a substantially airtight slideable end cap at its distal end. During mounting, axial alignment is provided when the handling shaft is engaged with the free end of the cylinder. A plurality of apertures on the cylinder's exterior surface conduct pressurized air, which expands the sleeve by exerting radial fluid pressure on its inside surface. A vacuum source actively evacuates the air from the sleeve's interior drawing the sleeve onto the cylinder. To remove the sleeve fluid pressure is reasserted exerting an axial force against the substantially airtight end cap. An auxiliary air supply is selectively activated to aid in sleeve removal.
Abstract:
Embodiments of systems and methods for compressing plasma are disclosed in which plasma can be compressed by impact of a projectile on a magnetized plasma in a liquid metal cavity. The projectile can melt in the liquid metal cavity, and liquid metal may be recycled to form new projectiles.