Abstract:
The present invention discloses technology for thin film ion beam sputter deposition on a substrate. The apparatus is a self-contained ion beam deposition source, which can be attached to or positioned inside of a vacuum chamber where substrates are located. This source consists of one or more ion beam sources combined with one or more sputtering targets and a unified magnetic field acting as a devise controlling delivery of the charged particles to the treated by the Iontron workpiece (substrate). The ion beam emits ion beams toward the target that generate sputtered particles directed toward the substrate, thus creating a thin film on the surface of the substrate. The target can be electrically biased, not biased or floating, thus allowing for modulation of the location upon which the charged ions impinge the target. Additionally, the position of the target can be adjusted relatively to the ion beam.
Abstract:
A focused ion source based on a Hall thruster with closed loop electron drift and a narrow acceleration zone is disclosed. The ion source of the invention has an ion focusing system consisting of two parts. The first part is a ballistic focusing system in which the aperture through which the beam exits the discharge channel is tilted. The second is a magnetic focusing system which focuses the ion beam exiting the discharge channel by canceling a divergent magnetic field present at the aperture through which the beam exits the discharge channel. The ion source of the invention also has an in-line hollow cathode capable of forming a self-sustaining discharge. The invention further reduces substrate contamination, while increasing the processing rate. Further the configuration disclosed allows the ion source to operate at lower operational gas pressures.
Abstract:
A focused ion source based on a Hall thruster with closed loop electron drift and a narrow acceleration zone is disclosed. The ion source of the invention has an ion focusing system consisting of two parts. The first part is a ballistic focusing system in which the aperture through which the beam exits the discharge channel is tilted. The second is a magnetic focusing system which focuses the ion beam exiting the discharge channel by canceling a divergent magnetic field present at the aperture through which the beam exits the discharge channel. The ion source of the invention also has an in-line hollow cathode capable of forming a self-sustaining discharge. The invention further reduces substrate contamination, while increasing the processing rate. Further the configuration disclosed allows the ion source to operate at lower operational gas pressures.