Abstract:
The disclosed coherent optical receiver includes a local light source; a 90-degree hybrid circuit; an optoelectronic converter; an analog-to-digital converter; a skew addition unit; and a FFT operation unit. The 90-degree hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs multiple optical signals separated into a plurality of signal components. The optoelectronic converter detects the optical signal and outputs a detected electrical signal. The analog-to-digital converter digitizes the detected electrical signal and outputs a detected digital signal. The skew addition unit adds to the detected digital signal an additional skew amount whose absolute value is equal to, whose sign is opposite to a skew amount of a difference in propagation delay in each lane connected to each output channel of the 90-degree hybrid circuit. The FFT operation unit performs a fast Fourier transform on the output from the skew addition unit.
Abstract:
In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an inter-channel skew arises, therefore, a coherent optical receiver according to an exemplary aspect of the invention includes a local light source, a 90° hybrid circuit, an optoelectronic converter, an analog to digital converter, and a digital signal processing unit; wherein the 90° hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs a plurality of optical signals separated into a plurality of signal components; the optoelectronic converter detects the optical signals and outputs detected electrical signals; the analog to digital converter quantizes the detected electrical signals and outputs quantized signals; the digital signal processing unit includes a skew compensation unit for compensating a difference in propagation delay between the plurality of signal components, and an FFT operation unit for performing a fast Fourier transform process on the quantized signals; and wherein the difference in propagation delay is calculated on the basis of a plurality of peak values with a central focus on one peak value in the results of performing the fast Fourier transform process.
Abstract:
In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an inter-channel skew arises, therefore, a coherent optical receiver according to an exemplary aspect of the invention includes a local light source, a 90° hybrid circuit, an optoelectronic converter, an analog to digital converter, and a digital signal processing unit; wherein the 90° hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs a plurality of optical signals separated into a plurality of signal components; the optoelectronic converter detects the optical signals and outputs detected electrical signals; the analog to digital converter quantizes the detected electrical signals and outputs quantized signals; the digital signal processing unit includes a skew compensation unit for compensating a difference in propagation delay between the plurality of signal components, and an FFT operation unit for performing a fast Fourier transform process on the quantized signals; and wherein the difference in propagation delay is calculated on the basis of a plurality of peak values with a central focus on one peak value in the results of performing the fast Fourier transform process.
Abstract:
It becomes difficult to perform the optimum equalization signal processing in coherent receiving systems if a channel response in an optical fiber transmission line includes a factor without temporal centrosymmetry, therefore, an equalization signal processor according to an exemplary aspect of the invention includes an equalization filter means configured to receive digital signals by coherent receiving systems; a coefficient control means configured to control coefficients defining characteristics of the equalization filter means; a significant coefficient holding means configured to hold significant coefficients of significant values among initial values of the coefficients; a significant coefficient positioning means configured to determine a significant coefficient position, a position of the significant coefficients in the initial values, so that equalization characteristics of the equalization filter means may be optimized; and a significant coefficient setting means configured to allocate the significant coefficients to the significant coefficient position.
Abstract:
A coherent receiver 1 assigns a first transmission signal to first transmission polarization, assigns a second transmission signal to second transmission polarization, and receives a quadrature multiplexed signal formed by applying quadrature multiplexing to the first transmission polarization and the second transmission polarization. The coherent receiver includes a detection means 10 for detecting the first transmission polarization and the second transmission polarization according to prescribed first reception polarization and second reception polarization and obtaining a first detected signal and a second detected signal; a quantization means 20 for quantizing the first detected signal and the second detected signal and obtaining a first quantized signal and a second quantized signal; and a signal processing means 30 for, when filtering the first quantized signal and the second quantized signal using a prescribed filtering control algorithm to form a first demodulated signal and a second demodulated signal respectively, adjusting filter coefficients of the filtering control algorithm according to the first quantized signal and the second quantized signal and the first demodulated signal and the second demodulated signal, and outputting the first demodulated signal and the second demodulated signal to a first output terminal and a second output terminal, respectively.
Abstract:
An optical communication system in which optical transmitter 101 that modulates an electric signal to an optical signal and transmits the optical signal and optical receiver 108 that receives the optical signal are connected via transmission path 107, wherein, when a change in the dispersion amount of chromatic dispersion caused by the optical signal passing through transmission path 107 is nearly eliminated, optical transmitter 101 and optical receiver 108 decrease the absolute value of a receiver-side dispersion compensation amount while keeping the total value of a transmitter-side dispersion compensation amount for compensating for the dispersion amount by optical transmitter 101 and the receiver-side dispersion compensation amount for compensating for the dispersion amount by optical receiver 108 substantially constant.
Abstract:
The optical modulator comprises an optical branching unit branching incident light into a first signal light and a second signal light; a first Mach-Zehnder modulator modulating the first signal light; a second Mach-Zehnder modulator modulating the second signal light; a phase shifter giving a fixed phase shift to the phase of the output light from the second Mach-Zehnder modulator; and an optical multiplexer multiplexing the output light from the first Mach-Zehnder modulator and the output light from the phase shifter. The phase shifter gives the phase shift so that the two input lights to the optical multiplexer have a phase difference of 60 degrees, and the first and second Mach-Zehnder modulators are driven by three-level signals.
Abstract:
In the optical communication device and the optical communication system using DPSK modulation whose cost is low, whose size is small and whose power consumption is low, the N:1 multiplexer 125 generates a serial signal by multiplexing a parallel signal coded by the DPSK modulation coding units 115˜117 bit by bit on a time division basis. The electric-phase modulation optical converter 127 converts a serial signal into a phase modulation light. The N-bit delay interferometer 132 executes DPSK decoding with respect to a phase modulation light by comparison with an N-bit preceding optical signal. The optical-electric signal converter 134 converts a decoded intensity modulation light into an electric signal. The N:1 demultiplexer 136 divides an electric signal converted by the optical-electric signal converter 134 into a number N of signals bit by bit on a time division basis.
Abstract:
An evaluation method of an optical receiver of an optical communication system, including: a DPSK (Differential Phase Shift Keying) signal modulated by a specific data series; a delay interferometer for performing delay detection on the DPSK signal; an optical receiver for receiving each of two optical outputs of the delay interferometer and outputting a difference signal; and a spectrum analyzer for measuring a spectrum of an output electrical signal of the optical receiver, comprising: monitoring a specific frequency component of the spectrum analyzer and detecting a delay difference and a deviation in optical reception level between the two outputs of the delay interferometer and the optical receiver.
Abstract:
Transmission delay time measurement is performed on a signal propagation path between respective points of two printed circuit boards connected by a coaxial cable. Measurement is made of a frequency-domain response of the cable and a first time-domain response of the propagation path at its sending point and a second time-domain response of the propagation path at its receiving point. From the first time-domain response and the frequency-domain response, estimation is made of a third time-domain response of the propagation path that would be observed at the receiving point if there is no waveform distortion on the surface of the printed circuit boards. Time-domain correlation is calculated between the second and third time-domain responses. A first delay time is determined from the estimated time-domain response and a second delay time is determined from the correlation. The first and second delay times are summed to yield the transmission delay time of the propagation path.