Abstract:
A solar cell system for vehicles and a control method thereof, wherein even when a change of electric power generated from a solar cell is high, the variable voltage devices and the constant voltage devices selectively distribute the electric power according to the electric power without changing voltage. Accordingly, energy efficiency can be improved, the number of components can be reduced without using a voltage converter, and energy conversion loss can be decreased. Further, electric power generated from the solar cell is used for ventilation, air purification, cool and warmth, and convenience devices of a vehicle. Thus, a driver is provided with a controlled environment when riding on the vehicle. Accordingly, the present invention can meet a driver's requirements for the utilization of convenience devices and can provide a comfortable interior environment.
Abstract:
A heat exchanger for a CO2 refrigerant includes at least three rows of tube groups including a plurality of tubes having an independent refrigerant path, first and second header pipes including a header where a plurality of tube insertion holes into which the tubes are inserted are formed and a tank having partition walls formed along a direction of the flow of a refrigerant, wherein a plurality of return holes are formed in the partition walls, end caps sealing both end portions of the first and second header pipes, a coupling reinforcement portion installed at least one of the first and second header pipes and reinforcing a coupling force of the header and the tank, a refrigerant inlet pipe connected to the first or second header pipe through which the refrigerant enters, and a refrigerant outlet pipe connected to the first or second header pipe through which the refrigerant is exhausted. The refrigerant entering through the refrigerant inlet pipe is made to flow in a direction adverse to a direction in which air flows.
Abstract:
A solar cell system for vehicles and a control method thereof, wherein even when a change of electric power generated from a solar cell is high, the variable voltage devices and the constant voltage devices selectively distribute the electric power according to the electric power without changing voltage. Accordingly, energy efficiency can be improved, the number of components can be reduced without using a voltage converter, and energy conversion loss can be decreased. Further, electric power generated from the solar cell is used for ventilation, air purification, cool and warmth, and convenience devices of a vehicle. Thus, a driver is provided with a controlled environment when riding on the vehicle. Accordingly, the present invention can meet a driver's requirements for the utilization of convenience devices and can provide a comfortable interior environment.
Abstract:
A heat exchanger uses a refrigerant acting under a high pressure, such as carbon dioxide, as a refrigerant. The heat exchanger includes first and second header pipes arranged a predetermined distance from each other and parallel to each other, each having at least two chambers independently sectioned by a partition wall, a plurality of tubes for separately connecting the chambers of the first and second header pipes, facing each other, wherein the tubes are divided into at least two tube groups, each having a single refrigerant path, a refrigerant inlet pipe formed at the chamber disposed at one end portion of the first header pipe, through which the refrigerant is supplied, a plurality of return holes formed in the partition wall to connect two chambers adjacent to each other, through which the refrigerant sequentially flows the tube groups, and a refrigerant outlet pipe formed at the chamber of one of the first and second header pipes connected to a final tube group of the tube groups along the flow of the refrigerant, through which the refrigerant is exhausted.
Abstract:
An internal oil separator for compressors of refrigeration systems is disclosed. This oil separator supplies an effective quantity of lubrication oil to the drive parts of a compressor, and protects the compressor from being unexpectedly damaged or locked. The oil separator accomplishes the recent trend of compactness of compressors, and prevents a bypass flow of the compressed refrigerant into the compressor. This oil separator collaterally reduces operational noises of the compressor. In this oil separator, an oil-separating chamber 21, having a generally U-shaped passage, is defined in the rear section of a compressor housing by a cover 2. The oil-separating chamber 21 has a guide wall 22, thus forming a desired U-shaped passage therein. Refrigerant inlet and outlet ports 13, 14 are formed on the rear wall of the housing. An oil-collecting part 17 is formed on the bottom of the oil-separating chamber 21 and stores recovered oil therein. This oil-collecting part 17 communicates with an oil return line 16 through an oil return channel 31 of a gasket 3, and so the recovered oil returns to the driving part chamber 18 of the compressor. The above gasket 3 is interposed between the housing 1 and the cover 2, thus accomplishing a desired sealing effect. An oil-separating plate 4 and/or a screen member 5 formed by single loop structure is preferably set within the oil-separating chamber 21.