摘要:
A gas channel forming plate includes protrusions, which extend parallel with each other, gas channels that are respectively located between each adjacent pair of the protrusions, and water channels, which are respectively formed on the back surface of each protrusion. Each protrusion includes first communication portions and second communication portions. Each first communication portion includes a first opening. Each second communication portion includes a second opening. The second communication portions of each protrusion constitute an expanding region, in which the opening area of the second opening in each second communication portion is greater than the opening area of the first opening of each first communication portion, to limit introduction of water to the water channel on the back side of the protrusion using capillary action by the second communication portions.
摘要:
A fuel cell system 10 removes water retaining in a cathode catalyst layer 217 in a fuel cell 20, after a start-up of the fuel cell 20 and before feed of coolant to the fuel cell 20.
摘要:
A fuel cell includes: an electrolyte membrane; a first reactive gas channel that is provided on a first surface side of the electrolyte membrane; a second reactive gas channel that is provided on a second surface side of the electrolyte membrane; and a coolant channel. The coolant channel is configured such that a flow direction of the first reactive gas flowing in the first reactive gas channel is opposite to a flow direction of the second reactive gas flowing in the second reactive gas channel, and a downstream portion of the flow of at least one of the first and second reactive gases, in a plane of the electrolyte membrane, is cooled from the central portion within the plane.
摘要:
A fuel cell system 10 removes water retaining in a cathode catalyst layer 217 in a fuel cell 20, after a start-up of the fuel cell 20 and before feed of coolant to the fuel cell 20.
摘要:
By a user selecting a name of a device displayed in association with identification information identical to the identification information notified at an icon of an under-control device at a table of a control device, an under-control device subject to control by the control device can be selected while reliably identifying an under-control device.
摘要:
The fuel cell system of the present invention supplies oxidant gas to a fuel cell during periods where generation of electrical power by the fuel cell is stopped. As a result, an amount of oxidant gas that is just sufficient to continue a reaction with remaining fuel gas is continued even when generation of electrical power itself is stopped. It is therefore possible to protect electrolyte membranes from damage occurring as a result of oxygen deficiency. Further, in addition to intermittent operation, the fuel cell system of the present invention is also applicable to steps for the stopping of generation of electrical power by a fuel cell in accordance with other conditions or at the time of the complete stopping of operation of the fuel cell system.
摘要:
A fuel cell battery (2) has a structure in which a plurality of cells are stacked and in-series connected. The cells include a cell (15), and one or more cells (16) of a cell stack (11). Hydrogen that has entered the fuel cell battery (2) from a channel (12) is supplied to each cell through a supply manifold (13). After the amount of hydrogen needed for power generation is consumed, gas is discharged as a fuel off-gas into a discharge manifold (14), and then flows into the cell (15). This prevents impurities contained in the fuel off-gas from being accumulated in the cells (16), and causes the impurities to be accumulated in the cell (15). Thus, variations in the amount of power generation among the cells can be restrained in a fuel cell battery system that employs a dead-end method.
摘要:
The invention provides a fuel cell, which includes: an electrolyte; an anode that is placed on one side of the electrolyte and has a fuel gas consumption surface on which fuel gas is consumed; a cathode that is placed on the other side of the electrolyte; and a fuel gas passage having a first passaged for distributing fuel gas to previously set regions on the fuel gas supply surface, a second passage for supplying the distributed fuel gas to the regions, and a fuel gas supply portion for supplying fuel gas from the first passage to the second passage. The fuel cell consumes most of the supplied fuel gas in the regions on the fuel gas consumption surface. A fuel gas passage has a fuel gas leakage suppression portion for suppressing leakage of fuel gas between the first passage and the second passage.
摘要:
A fuel cell has: an electrolyte; an anode provided on one side of the electrolyte and having a fuel-gas consuming face at which fuel gas is consumed; a cathode provided on the other side of the electrolyte and having an oxidizing-gas consuming face at which oxidizing gas is consumed; and a fuel-gas passage portion forming a passage through which fuel gas is supplied to predetermined regions of the fuel-gas consuming face of the anode. The fuel cell has an operation mode in which almost the entire amount of the supplied fuel gas is consumed at the fuel-gas consuming face of the anode.
摘要:
This separator is equipped with a first plate 33 and a second plate 32. The first plate 33 has a first hole 3341 through which reaction gas flows. The second plate 32 is to be stacked with the first plate 33, and has a second hole 3241 through which the reaction gas flows. The second hole 3241 overlaps with the first hole 3341 at the first part 3231, and is in fluid communication with the first hole 3341. The second plate 32 has a partition part 323 that divides the part 3247 of the second part which does not overlap the first hole 3341 among the second holes 3241 into a plurality of flow path parts 56. The separator 30 is further equipped with an oscillating portion 325. The oscillating portion 325 is connected to the partition part 323. The oscillating portion 325 is arranged at a position such that part of the oscillating portion 325 overlaps with the first hole 3341 of the first plate 33. The oscillating portion 325 is provided so as to be shaken by the reaction gas that flows inside the first hole 3341.