Abstract:
A treatment method for a living tissue using energy includes a first step of outputting high-frequency energy to grasped living tissues to destroy cell membranes of the grasped living tissues, allowing proteins to flow out of cells and joining the living tissues to each other, and a second step of, after the first step, outputting heat energy to the grasped living tissues to dehydrate the grasped living tissues.
Abstract:
An ultrasound operation apparatus comprises: an ultrasound transducer; a driving section that drives the ultrasound transducer by a drive signal; a probe having a proximal end section provided with the ultrasound transducer and a distal end section to which ultrasound oscillation is transmitted, the probe performing a treatment on a living tissue using ultrasound oscillation at the distal end section; a detecting section that detects, from a drive signal, a physical quantity which varies due to cavitation generated by ultrasound oscillation of the distal end section; and an output control section that controls an output of the driving section in accordance with the detected physical quantity.
Abstract:
A control switch detecting apparatus aims at detecting a control switch operable by an operator for controlling a medical device. When a position signal for representing a position of at least one of the control switch and the operator is transmitted from at least one of the control switch and the operator, an obtaining unit obtains relative position information indicative of a relative positional relationship between the control switch and the operator based on the transmitted position signal.
Abstract:
In an ultrasonic operation apparatus according to the present invention, in order to detect the initial resonance frequency (Fro) promptly once a foot switch is pressed, under the control of a sweeping speed control circuit, the D/A converter D/A converts 8-bits of signals (phase difference amount signal Δθ) representing the amount of the phase difference detected by the phase comparator, and the output of the D/A converter is output to a VCO so as to become a clock for a sweep circuit. When a phase difference amount between θi and θv is large and a drive frequency setting signal (Fs) is far from Fro, the sweeping speed for Fro detection is increased. When a phase difference amount between θi and θv is small and Fs is close to Fro, the sweeping speed for Pro detection is decreased.
Abstract:
In an ultrasonic operation apparatus according to the present invention, in order to detect the initial resonance frequency (Fro) promptly once a foot switch is pressed, under the control of a sweeping speed control circuit, the D/A converter D/A converts 8-bits of signals (phase difference amount signal Δθ) representing the amount of the phase difference detected by the phase comparator, and the output of the D/A converter is output to a VCO so as to become a clock for a sweep circuit. When a phase difference amount between θi and θv is large and a drive frequency setting signal (Fs) is far from Fro, the sweeping speed for Fro detection is increased. When a phase difference amount between θi and θv is small and Fs is close to Fro, the sweeping speed for Fro detection is decreased.
Abstract:
A control device for a medical system includes: an instructing unit, which can be instructed by an operator, for outputting an instructing signal according to the instruction by the operator; a control signal generating unit for receiving an instructing signal, and generating multiple control signals for controlling multiple medical apparatuses in accordance with the instructing signal; and multiple output units, which can be connected with a medical apparatus, for outputting control signals to the corresponding medical apparatus.
Abstract:
An ultrasonic driving apparatus consists mainly of a digital oscillatory circuit, an amplifier, a detection circuit, a phase difference detection circuit, a register, a data transfer circuit, and a switching circuit. The digital oscillatory circuit is used to drive an ultrasonic transducer at the resonance frequency of the ultrasonic transducer. The amplifier amplifies a driving signal output from the digital oscillatory circuit. The detection circuit detects the phase θv of an applied voltage and the phase θi of an induced current from the driving signal applied to the ultrasonic transducer via the amplifier. The phase difference detection circuit detects a difference between the phases θv and θi. The register holds digital frequency data with which a frequency at which the digital oscillatory circuit is oscillated is determined, and changes the digital frequency data. The data transfer circuit transfers the digital frequency data to the register. The switching circuit is interposed between the phase difference detection circuit and register.
Abstract:
This is a calculus breaking device comprising a first shock type probe for generating a first shock wave for breaking a calculus, a second shock type probe for generating a second shock wave different from the first shock wave and a control unit for switching between the first and second shock type probes to control and drive them.
Abstract:
An ultrasonic surgical apparatus comprises an ultrasonic transducer for generating vibration in response to a drive signal to be given, and a treatment device having a probe to which the vibration is transferred from the ultrasonic transducer to effect treatment with the vibration. This device further comprises a signal generator for generating an AC signal for driving the ultrasonic transducer, and a modulator for modulating the AC signal generated by the signal generator to produce a drive signal to be given to the ultrasonic transducer.
Abstract:
An ultrasonic operation system includes a handpiece having an ultrasonic transducer, which treats a living tissue using ultrasonic oscillations. The system includes a driving signal oscillator for producing a driving signal for driving the ultrasonic transducer and supplying the driving signal to the handpiece; a sweep circuit for sweeping a frequency of the driving signal; a data transfer circuit for transferring start frequency data to the sweep circuit to start sweeping the frequency of the driving signal; a detection circuit for detecting a resonance frequency of the handpiece based on the driving signal of which the frequency has been swept by the sweep circuit; and a chase lock loop (PLL) circuit for locking the frequency of an output current onto the resonance frequency; and, a switch for switching between the PLL circuit and the sweep circuit according to a detection result from the detection circuit.