摘要:
An integer transform, which provides integer output values, carries out the TDAC function of a MDCT in the time domain before the forward transform. In overlapping windows, this results in a Givens rotation which may be represented by lifting matrices, wherein time-discrete sampled values of an audio signal may at first be summed up on a pair-wise basis to build a vector so as to be sequentially provided with a lifting matrix. After each multiplication of a vector by a lifting matrix, a rounding step is carried out such that, on the output-side, only integers will result. By transforming the windowed integer sampled value with an integer transform, a spectral representation with integer spectral values may be obtained. The inverse mapping with an inverse rotation matrix and corresponding inverse lifting matrices results in an exact reconstruction.
摘要:
For characterizing an information signal having an amplitude-time waveform with local extreme values, at first the local extreme values of the information signal are determined, wherein a local extreme value is defined by a time instant and an amplitude. Furthermore, area information of valleys or mountains of the information signal in case of a one-dimensional amplitude of the information signal or volume information in case of a two-dimensional amplitude of the information signal of valleys or mountains is ascertained. A valley or mountain is defined by a temporal section of the information signal, wherein the section of the information signal extends from the time instant of a local extreme value to a temporarily adjacent value of the information signal having the same amplitude as the local extreme value. Area or volume information of several mountains or valleys is characteristic for the information signal and permits further characterization of the information signal, build-up of an information signal database, or identification of an information signal on the basis of an existing information signal database. Area or volume information is on the one hand characteristic for the information signal and on the other hand, due to its integral nature, robust against information signal changes in form of overlays or distortions.
摘要:
Devices and methods for generating encrypted data, for playing encrypted data and for re-signing originally signed encrypted data are based on the encrypted data, apart from the encrypted media information, to include the information required for decrypting the data and additionally a signature of who has generated the encrypted data. Thus the origin of the encrypted data can be traced back. In particular, passing on the encrypted data to a limited extent by the producer of the *encrypted data, for example to friends or acquaintances, is allowed, while only a mass reproduction of the encrypted data is considered as pirate copying. The pirate copier can, however, be found out with the help of the signature, wherein the signature is optionally protected by an embedded watermark signature. Because this is a concept wherein, when being used legally, only encrypted data occur, the unauthorized removal of the encryption is a statutory offence. The inventive concept makes possible finding the offender and at the same time considers ownerships of the operators with regard to a limited passing-on of media information, and thus has the potential of being accepted on the market.
摘要:
In a method of coding discrete time signals (X1) sampled with a first sampling rate, second time signals (x2) are generated using the first time signals having a bandwidth corresponding to a second sampling rate, with the second sampling rate being lower than the first sampling rate. The second time signals are coded in accordance with a first coding algorithm. The coded second signals (X2c) are decoded again in order to obtain coded/decoded second time signals (X2cd) having a bandwidth corresponding to the second sampling frequency. The first time signals, by frequency domain transformation, become first spectral values (X1). Second spectral values (X2cd) are generated from the coded/decoded second time signals, the second spectral values being a representation of the coded/decoded time signals in the frequency domain. To obtain weighted spectral values, the first spectral values are weighted by means of the second spectral values, with the first and second spectral values having the same frequency and time resolution. The weighted spectral values (Xb) are coded in accordance with a second coding algorithm in consideration of a psychoacoustic model and written into a bit stream. Weighting the first spectral values and the second spectral values comprises the subtraction of the second spectral values from the first spectral values in to obtain differential spectral values.
摘要:
Disclosed is an apparatus for checking audio signal processing systems. The apparatus has the following features:the apparatus is provided with a first input connection, to which the input signal of the audio processing system to be checked is transmitted, a second input connection, to which the output signal of said system is transmitted, and a signal processor.said signal processor ascertains the signal delay time of said system to be checked by means of correlating said signals received at said two input connections,said signal processor always composes the difference signal from said signal received at said first input connection during a specific time span and said signal received at said second input connection, lagging by the signal delay time,said signal processor ascertains the spectral composition of said signal received at said first input connection during said specific time span and of said respective difference signal,said signal processor ascertains the hearing threshold of the human ear from said spectral composition and compares the ascertained hearing threshold with the respective difference signal.
摘要:
A loudspeaker system including a plurality of sonic converters fixed in or to the rear of sound passage openings of a carrier plate is disclosed. The carrier plate is configured in the form of a wall plate for interior spaces or outside facades of buildings and the sonic converters are integrated into the carrier plate. The loudspeaker system or loudspeaker wall plate, respectively, permit the realization of an optimum acoustic irradiation of a space without aesthetically annoying loudspeaker boxes.
摘要:
In a method for generating an identifier for an audio signal including a tone generated by an instrument, a discrete amplitude-time representation of the audio signal is generated at first, wherein the amplitude-time representation, for a plurality of subsequent points in time, comprises a plurality of subsequent amplitude values, wherein a point in time is associated to each amplitude value. Subsequently, an identifier for the audio signal is extracted from the amplitude-time representation. An instrument database is formed from several identifiers for several audio signals including tones of several instruments. By means of a test identifier for an audio signal having been produced by an unknown instrument, the type of the test instrument is determined using the instrument database. A precise instrument identification can be obtained by using the amplitude-time representation of a tone produced by an instrument for identifying a musical instrument.
摘要:
For characterizing an information signal having an amplitude-time waveform with local extreme values, at first the local extreme values of the information signal are determined, wherein a local extreme value is defined by a time instant and an amplitude. Furthermore, area information of valleys or mountains of the information signal in case of a one-dimensional amplitude of the information signal or volume information in case of a two-dimensional amplitude of the information signal of valleys or mountains is ascertained. A valley or mountain is defined by a temporal section of the information signal, wherein the section of the information signal extends from the time instant of a local extreme value to a temporarily adjacent value of the information signal having the same amplitude as the local extreme value. Area or volume information of several mountains or valleys is characteristic for the information signal and permits further characterization of the information signal, build-up of an information signal database, or identification of an information signal on the basis of an existing information signal database. Area or volume information is on the one hand characteristic for the information signal and on the other hand, due to its integral nature, robust against information signal changes in form of overlays or distortions.
摘要:
In a method for signalling a noise substitution when coding an audio signal, the time-domain audio signal is first transformed into the frequency domain to obtain spectral values. The spectral values are subsequently grouped together to form groups of spectral values. On the basis of a detection establishing whether a group of spectral values is a noisy group or not, a codebook is allocated to a non-noisy or tonal group by means of a codebook number for redundancy coding of the same. If a group is noisy, an additional codebook number which does not refer to a codebook is allocated to it in order to signal that this group is noisy and therefore does not have to be redundancy coded. By signalling noise substitution by means of a Huffman codebook number for noisy groups of spectral values, which are e.g. sections made up of scale factor bands which do not have to be redundancy coded, an opportunity is provided to indicate the presence of a noise substitution in a scale factor band in the bit stream syntax of the MPEG-2 Advanced Audio Coding (AAC) Standard without having to interfere with the basic coding structure and without having to meddle with the structure of the existing bit stream syntax.
摘要:
In coding of an audio signal, coded signals with low quality and bit rate on the one hand and coded signals with high quality and bit rate on the other hand are transmitted to a decoder. At first, the audio signal is coded with low bit rate and is transmitted to the decoder before an additional coded signal is transmitted to the decoder, which either alone or together with the first coded signal upon decoding thereof provides a decoded signal with high quality within the decoder. In this manner, a low-quality decoded signal is generated first in the decoder before decoding of the high-quality signal is possible.