Abstract:
A direct feeding apparatus for impedance matching of a wireless power transmission device includes a helical type resonator, and a feeding unit configured to directly feed power to a region having a relatively small current value as compared to a center of a conductive line of the resonator.
Abstract:
An apparatus for reducing a radiation power and an electric field includes a transmission end energy transfer unit configured to include a feeding roof and a transmission coil, a receiving end energy transfer unit configured to be symmetrically separated from the transmission end energy transfer unit at a predetermined distance, and to include a receiving roof and a receiving coil, a first electric field shield configured to be made of a nonconductor, to have a shape surrounding the transmission end energy transfer unit, and to have an empty space of a predetermined first thickness; and a second electric field shield to be made of a nonconductor, to have a shape surrounding the receiving end energy transfer unit, and to have an empty space of a predetermined second thickness, wherein the empty spaces are filled with a dielectric material for shielding the electric field.
Abstract:
An apparatus for reducing a radiation power and an electric field includes a transmission end energy transfer unit configured to include a feeding roof and a transmission coil, a receiving end energy transfer unit configured to be symmetrically separated from the transmission end energy transfer unit at a predetermined distance, and to include a receiving roof and a receiving coil, a first electric field shield configured to be made of a nonconductor, to have a shape surrounding the transmission end energy transfer unit, and to have an empty space of a predetermined first thickness; and a second electric field shield to be made of a nonconductor, to have a shape surrounding the receiving end energy transfer unit, and to have an empty space of a predetermined second thickness, wherein the empty spaces are filled with a dielectric material for shielding the electric field.
Abstract:
Provided is a transmitting/receiving isolation antenna that can perform wireless bi-directional communication in the co-channel, co-polarization and co-time by acquiring high isolation from transmitting and receiving antennas having co-time, co-channel and co-polarization and set up adjacently. The isolation antenna includes a first antenna; second and third antennas symmetrically positioned in the same distance from the first antenna; a shielding unit symmetrically positioned between the first and second antennas, and between the first and third antennas; and a signal removing unit for removing a signal transmitted from the first antenna to the second and third antennas.
Abstract:
Provided is an apparatus for harvesting energy from a microwave. An apparatus for harvesting energy from a microwave in an electricity storage system of a building, includes: a plurality of rectennas arranged with a predetermined length according to characteristic of microwave to be absorbed, and configured to collect microwave in the atmosphere and convert the collected microwave into electric energy; a current converter configured to convert the electric energy outputted from the rectennas into a storable current; and a charging tank configured to store the current outputted from the current converter, wherein the arranged rectennas are attached to an outer wall of the building, and the rectennas attached to the top of the building are printed in a transparent conductor on the surface of a solar cell.
Abstract:
A probe and an antenna reduces the multiple reflection of electromagnetic waves. The probe includes: a waveguide; and a resonance unit entirely or partially disposed in the inside of the waveguide and comprising a conductor.
Abstract:
Provided is a loop antenna. The loop antenna includes a first antenna element embodied as a coaxial cable, a second antenna element embodied as a line and connected to one end of the first antenna element in series, a third antenna eLement embodied as a line, having one end connected to a ground plane and the other end connected to the other end of the first antenna element in series, and a power feeding cable for supplying power to the second antenna element.
Abstract:
Provided is a wireless power transfer device. The wireless power transfer device includes: a base substrate including a base coil; transmission substrates spaced from the base substrate and including transmission coils; and a contact plug penetrating the base substrate and the transmission substrates to connect one ends of the transmission coils; wherein the transmission coils have the greater turn number than the base coil and transmitting/receiving a power signal through a magnetic resonance method.
Abstract:
A probe and an antenna, more particularly, a probe and antenna using a waveguide, which reduces the multiple reflection of electromagnetic waves. The probe includes: and the antenna each include a waveguide and a resonance unit is entirely or partially disposed in the inside of the waveguide, and comprising the resonance unit including a conductor.
Abstract:
A system for reducing a radiation field in a wireless power transmission system includes a signal generation unit, a power amplification unit, a signal detection unit, a standing wave ratio (SWR) calculation unit and a control unit. The signal generation unit receives power and generates a signal for wireless power transmission. The power amplification unit amplifies the wireless signal generated by the signal generation unit. The signal detection unit detects a radiation signal generated by the magnetic resonator with respect to output power of the power amplification unit. The SWR calculation unit calculates an SWR using the detected radiation signal. The control unit selects a frequency having a lowest SWR based on the SWR calculated by the SWR calculation unit, and controls the signal generation unit to generate the signal for the wireless power transmission using the selected frequency.