Abstract:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.
Abstract:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.
Abstract:
A shape data generation method includes: identifying, from among a plural vertices of a first shape to be transformed, one or plural first vertices satisfying a predetermined condition including a condition that a normal line of a vertex to be processed crosses with a second shape that is a shape of a transformation target, which is identified from image data; transforming the first shape so as to move each of the one or plural identified first vertices a predetermined distance toward a corresponding normal direction of the identified first vertex; and storing data concerning the plural vertices of the transformed first shape after the identifying and the transforming are executed the predetermined number of times.
Abstract:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.
Abstract:
A disclosed method is a shape data generation method including: identifying, from among a plural vertices of a first shape to be transformed, one or plural first vertices satisfying a predetermined condition including a condition that a normal line of a vertex to be processed crosses with a second shape that is a shape of a transformation target, which is identified from image data; transforming the first shape so as to move each of the one or plural identified first vertices a predetermined distance toward a corresponding normal direction of the identified first vertex; and storing data concerning the plural vertices of the transformed first shape after the identifying and the transforming are executed the predetermined number of times.
Abstract:
A stress estimating system includes a polygon data input unit of polygon data modeling a vascular wall, an interactive analysis condition setting unit for setting the tensile force acting on the vascular wall boundary, blood pressure and constraint estimated as proper on the boundary, a stress analysis unit for obtaining two-dimensional stress by solving a mechanical equilibrium equation with respect to the membrane stress on a curvilinear surface of the vascular wall under the condition given by the polygon data input unit and the interactive analysis condition setting unit, and an interactive visualization unit for displaying a distribution of a stress component designated by a system user. Without assuming any symmetry for the curvilinear configuration and stress distribution, a complicated stress distribution is estimated only out of the mechanical equilibrium equation with respect to membrane stress.
Abstract:
A method includes: obtaining designated 3D template for a designated part in a heart; generating 3D annulus data representing an annulus of a heart valve identified as a reference of transformation, from a cross-section image in a plane passing through an axis within the annulus of the identified heart valve in 3D volume data generated from tomographic images; identifying a first point on the annulus of the identified heart valve in the designated 3D template and a second point on the annulus represented by the 3D annulus data; arranging n starting points from the first point on the annulus of the identified heart valve in the designated 3D template and n target points from the second point on the annulus represented by the 3D annulus data; and calculating movement destination coordinates of vertices of polygons relating to the designated 3D template to transform the designated 3D template.
Abstract:
According to an aspect of the embodiment, a user apparatus transmits a parameter on generation of drawing data to each of drawing data generation apparatuses through a network, to assign generation processing of the drawing data to each of drawing data generation apparatuses. The user apparatus receives the drawing data generated based on the parameter by each of the plurality of drawing data generation apparatuses through the network, and displays the received drawing data. The user apparatus changes the parameter corresponding to the displayed drawing data, and displays a new drawing data corresponding to the changed parameter.
Abstract:
A stress estimating system includes a polygon data input unit of polygon data modeling a vascular wall, an interactive analysis condition setting unit for setting the tensile force acting on the vascular wall boundary, blood pressure and constraint estimated as proper on the boundary, a stress analysis unit for obtaining two-dimensional stress by solving a mechanical equilibrium equation with respect to the membrane stress on a curvilinear surface of the vascular wall under the condition given by the polygon data input unit and the interactive analysis condition setting unit, and an interactive visualization unit for displaying a distribution of a stress component designated by a system user. Without assuming any symmetry for the curvilinear configuration and stress distribution, a complicated stress distribution is estimated only out of the mechanical equilibrium equation with respect to membrane stress.
Abstract:
A method includes: obtaining designated 3D template for a designated part in a heart; generating 3D annulus data representing an annulus of a heart valve identified as a reference of transformation, from a cross-section image in a plane passing through an axis within the annulus of the identified heart valve in 3D volume data generated from tomographic images; identifying a first point on the annulus of the identified heart valve in the designated 3D template and a second point on the annulus represented by the 3D annulus data; arranging n starting points from the first point on the annulus of the identified heart valve in the designated 3D template and n target points from the second point on the annulus represented by the 3D annulus data; and calculating movement destination coordinates of vertices of polygons relating to the designated 3D template to transform the designated 3D template.