Abstract:
Providing discontinuous reception (DRX) is disclosed. In DRX mode a wireless transmit/receive unit (WTRU) may periodically wake up, in relation to a DRX interval, to check for a paging message. The WTRU may reenter the DRX mode if there is no paging message. The WTRU may receive another specified DRX interval, in connection with a broadcast message, based on the activity of the WTRU. The another DRX interval may be increased as inactivity of the WTRU increases.
Abstract:
A camera detects devices, such as other cameras, smart devices, and access points, with which the camera may communicate. The camera may alternate between operating as a wireless station and a wireless access point. The camera may connect to and receive credentials from a device for another device to which it is not connected. In one embodiment, the camera is configured to operate as a wireless access point, and is configured to receive credentials from a smart device operating as a wireless station. The camera may then transfer the credentials to additional cameras, each configured to operate as wireless stations. The camera and additional cameras may connect to a smart device directly or indirectly (for instance, through an access point), and the smart device may change the camera mode of the cameras. The initial modes of the cameras may be preserved and restored by the smart device upon disconnection.
Abstract:
A method and apparatus for multi-protocol uplink access defines two protocols and maps each to one of a user's access service class (ASC) and quality of service (QoS). A first uplink access protocol type is defined in which a random access channel (RACH) burst is sent and an acquisition indicator channel (AICH) burst is sent, and a channel assignment grant is sent on another downlink channel. A second uplink access protocol type is defined in which a RACH preamble is sent and an AICH burst is sent.
Abstract:
A method and apparatus for detecting a radio link (RL) failure for uplink (UL) and downlink (DL) in a long term evolution (LTE) wireless communication system including at least one wireless transmit/receive unit (WTRU) and at least one evolved Node-B (eNodeB) are disclosed. A determination is made as to whether an RL has an in-synchronization status or an out-of-synchronization status. An RL failure is declared if an out-of-synchronization status is detected.
Abstract:
A receiver sends hybrid automatic repeat request (H-ARQ) feedback for a current packet and at least one previous packet, whereby an error is detected based on the H-ARQ feedback. The receiver sends H-ARQ feedback with an identification of the packet or a sequence number of a packet that the receiver expects to receive next. The receiver stores a packet in a memory before combining the packet with a previously received packet, and decodes the stored packet after failing to decode a combined packet to avoid a corruption error. The receiver may set a timer when sending a NACK. If the receiver fails to receive a packet until expiration of the timer, the receiver initiates a process for recovering the packet. Each H-ARQ feedback may be associated with other attributes. Some H-ARQ processes may operate in an asynchronous mode while others in a synchronous mode in the same direction.
Abstract:
A communications device operates in a wireless local area network (WLAN), and includes a processor operating in accordance with an operating system that includes a standardized set of object identifiers (OIDs) associated therewith. An antenna steering algorithm is executed by the processor for generating a driver query. A driver generates an antenna query in response to the driver query. A smart antenna is driven by the driver and generates antenna beams for receiving signals, and generates metrics based upon the received signals. The smart antenna provides to the driver a metric associated with the antenna query. The driver associates the metric received from the smart antenna with one of the object identifiers from the standardized set of object identifiers, and provides the same to the antenna steering algorithm.
Abstract:
A communications device operates in a wireless local area network (WLAN), and includes a processor operating in accordance with an operating system that includes a standardized set of object identifiers (OIDs) associated therewith. An antenna steering algorithm is executed by the processor for generating a driver query. A driver generates an antenna query in response to the driver query. A smart antenna is driven by the driver and generates antenna beams for receiving signals, and generates metrics based upon the received signals. The smart antenna provides to the driver a metric associated with the antenna query. The driver associates the metric received from the smart antenna with one of the object identifiers from the standardized set of object identifiers, and provides the same to the antenna steering algorithm.
Abstract:
One embodiment of the invention relates to a method of merging segments to form supersegments in an image. The image consists of a plurality of segments that are constituent portions of the image. At least one candidate segment(s) and at least one neighboring segment(s) for each candidate segment are identified. An error statistic for each pair, consisting of a candidate segment and a corresponding neighboring segment, is computed. A neighboring segment is determined that results in a smallest error statistic for a given candidate segment. A determination is also made as to whether the smallest error statistic is sufficiently small to merit merging of the corresponding pair of segments. The corresponding pair of segments is merged to create one supersegment. The supersegment is a new segment including all pixels formerly contained in one of the two segments that were merged.
Abstract:
Each of a plurality of packets in a particular flow is classified into one of a plurality of quality of service (QoS) classes based on information about each packet. Each packet is then adaptively processed based on the QoS class for each packet. The classification may be performed based on media information included in a session description protocol (SDP) messaging. The classification may also be performed based on a real-time transmit protocol (RTP) payload, an RTP header, a transmission control protocol (TCP) header, a user datagram protocol (UDP) header, and an Internet protocol (IP) header. The packets may be transmitted using multiple system architecture evolution (SAE) radio bearers each of which is used to deliver differentiated QoS requirements. The packets may be mapped to eigen-modes based on the QoS class of each packet such that a packet requiring a higher level of QoS is mapped to a stronger eigen-mode.
Abstract:
Embodiment of the present invention can be used to select random access channels to be assigned to user terminals. In one embodiment, the invention includes a base station receiving a signal from a second radio, the received signal containing information about the second radio, and selecting one or more channels to be used by the second radio for random access to the base station using the information about the second radio. Then the base station sends a signal to the second radio, the sent signal containing information about the selected one or more channels.