摘要:
Methods and apparatus are provided for reducing frame violations in a stereoscopic display. A stereoscopic display system for presenting a stereoscopic image to a user suitably includes one or more cameras, each providing a video image, and a video processor. A stereoscopic display includes a left module and a right module, with each module having an eyepiece and a display panel with at least one aperture located therebetween. The stereoscopic display is configured to produce the stereoscopic image on the display panels as a function of image data received from the video processor, with the apertures forming a window around at least a portion of the perimeter of the display to thereby provide a visual reference point to the user that reduces or eliminates frame violations. The stereoscopic display system may be used during aerial refueling operations, or in any other display environment.
摘要:
A method and apparatus for aligning the left and right image channels a two-image stereoscopic three-dimensional display is disclosed. A left and right alignment pattern may be shown on the left-eye and right-eye image screens, respectively, pre-computed for any given input imaging geometry. The operator (or alignment processor) then adjust the displays to converge the superimposed left-eye and right-eye test patterns by moving the display elements using display positioning equipment and/or software. This ensures that the stereoscopic three-dimensional display geometry matches the three-dimensional camera imaging geometry in order to produce a minimally-distorted visual depth perception of objects in space. Such precision alignment can be essential for efficient and safe telerobotic operation applications, as in the case of remote aerial refueling operations, for example.
摘要:
A method and apparatus for aligning the left and right image channels a two-image stereoscopic three-dimensional display is disclosed. A left and right alignment pattern may be shown on the left-eye and right-eye image screens, respectively, pre-computed for any given input imaging geometry. The operator (or alignment processor) then adjust the displays to converge the superimposed left-eye and right-eye test patterns by moving the display elements using display positioning equipment and/or software. This ensures that the stereoscopic three-dimensional display geometry matches the three-dimensional camera imaging geometry in order to produce a minimally-distorted visual depth perception of objects in space. Such precision alignment can be essential for efficient and safe telerobotic operation applications, as in the case of remote aerial refueling operations, for example.