Abstract:
Embodiments are directed to a stepper motor and a controller, where the controller measures a parameter associated with a current of the stepper motor prior to support of commanding a step in connection with the stepper motor. That is, the controller commands the step in connection with the stepper motor, measures a parameter subsequent to commanding the step, compares the measurements of the parameter, and determines whether a fault exists with respect to the stepper motor based on the comparison of the measurements.
Abstract:
A multi-channel control system includes at least a first primary control microprocessor and a second primary control microprocessor operable to control a device, and at least a first secondary control microprocessor and a second secondary control microprocessor operable to control the device. Each of the first and second primary control microprocessors and the first and second secondary control microprocessors are arranged as an independent control channel.
Abstract:
A multi-channel controller uses multiple logic gates and multiple control channels to provide fault tolerant protection against undesired events.
Abstract:
A multi-channel control system includes a first primary control microprocessor and a second primary control microprocessor operable to control a device, and a first secondary control microprocessor and a second secondary control microprocessor operable to control the device. Each of the first and second primary control microprocessors and the first and second secondary control microprocessors are arranged as an independent control channel.
Abstract:
A resolver interface includes an excitation coil, a first secondary coil, a second secondary coil, a sampling circuit, and a controller. The excitation coil receives an excitation signal that generates first and second signals in the first secondary coil and the second secondary coil, respectively. The sampling circuit includes a multiplexer that samples at least one period of the excitation signal, the first signal, and the second signal, individually. The controller is configured to calculate a sign of the first signal and the second signal relative to the excitation signal, wherein based on the calculated sign of the first signal and the second signal the controller determines a quadrant of the excitation coil and based on the determined quadrant and magnitudes of the sampled first signal and second signal calculates a position of the excitation coil.
Abstract:
Embodiments are directed to a stepper motor, and a controller configured to: measure a parameter associated with a current of the stepper motor prior to commanding a step in connection with the stepper motor, command the step in connection with the stepper motor, measure the parameter subsequent to commanding the step, compare the measurements of the parameter, and determine whether a fault exists with respect to the stepper motor based on the comparison of the measurements.
Abstract:
Embodiments are directed to commanding, by a controller, a step in connection with a stepper motor, discharging a current in a coil of the stepper motor by transferring the current to a capacitor coupled to the coil responsive to the commanded step, and driving a current in the coil by using charge stored on the capacitor during the discharging of the current in the coil.
Abstract:
A resolver interface includes an excitation coil, a first secondary coil, a second secondary coil, a sampling circuit, and a controller. The excitation coil receives an excitation signal that generates first and second signals in the first secondary coil and the second secondary coil, respectively. The sampling circuit includes a multiplexer that samples at least one period of the excitation signal, the first signal, and the second signal, individually. The controller is configured to calculate a sign of the first signal and the second signal relative to the excitation signal, wherein based on the calculated sign of the first signal and the second signal the controller determines a quadrant of the excitation coil and based on the determined quadrant and magnitudes of the sampled first signal and second signal calculates a position of the excitation coil.
Abstract:
A multi-channel stepper motor controller has at least a first and second stepper motor control channel. Each of the control channels has a solid state switching circuit operable to connect the control channel to a stepper motor.
Abstract:
An integrated TDM-based/packet-based telecommunications backplane system includes a multi-bit backplane bus, a plurality of TDM data modules and packet based data modules coupled to the backplane bus, and a frame controller coupled to the bus which generates a frame by pre-assigning a first plurality of timeslots of a frame for the fixed rate TDM traffic, and allotting the remainder of the frame timeslots as a pool for packet-based traffic. The TDM data modules, which can include bit, and byte or nibble mode modules, place data on the backplane bus in their allotted time slots. The packet-based data modules contend for the pooled timeslots by raising a request on a "request" thread of the backplane bus when the packet module has a packet to send, and dropping the request and raising a busy flag on the "busy" thread while sending a data packet. In order to insure that only one packet-based data module will attempt to raise the request flag at a given time, the pooled timeslots are divided among the packet data sources for purposes of raising the request flag only. Thus, only one packet-based data module can raise its request flag during a given timeslot of the pool; although when sending data, the packet-based data module can send during all timeslots of the pool.