摘要:
An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.
摘要:
Apparatus and methods provide for a swept-wing powered-lift aircraft. Aspects of the disclosure provide a powered-lift aircraft that utilizes the engine exhaust flow over upper surface blown flaps to increase lift during various flight operations. The powered-lift aircraft has wings with inboard portions and outboard portions. The adjacent inboard and outboard portions share a swept leading edge. The leading edge is swept to a degree that shifts the outboard portion rearward to a position in which the aircraft center of lift has little to no variance upon the activation or deactivation of a powered-lift system.
摘要:
A rotor blade including a root attachable to a rotor hub. The blade includes a tip and one or more channels aligned within the blade generally between the root and the tip. Each channel has a sealed first end and a second end vented to outside the blade. The channel(s) are vented to one or more exterior surfaces of the blade through one or more apertures in the exterior surface(s).
摘要:
Apparatus and methods provide for an aircraft configuration that utilize structural and engine exhaust flow control devices to enhance performance. Aspects of the disclosure provide a fuselage with a pressure vessel nested within a non-cylindrical outer mold line fairing. A twin-boom empennage may be connected to the fuselage. A wing may attach in a blended wing configuration with a sweep angle that positions the aircraft center of lift to minimize any pitching moment induced by the activation or deactivation of an upper surface blown (USB) system. The USB system may include a conformal USB flap positioned downstream of an engine exhaust plume, as well as a controllable USB nozzle aperture to promote exhaust flow attachment to the conformal USB flap. A universal convergent nozzle may be utilized to connect each controllable USB nozzle aperture to a corresponding internally mounted aircraft engine.
摘要:
Systems and methods are described for controlling flow disturbances emanating from a protrusion, such as a beam propagating device. In one embodiment, a method includes positioning a flow control element at least partially around a base portion of a protrusion, wherein the flow control element includes at least one flow expanding feature. A reduced pressure zone is generated proximate an aft portion of the protrusion by expanding at least a portion of a flowfield. One or more flow disturbances emanating downstream from the protrusion are deflected using the at least one reduced pressure zone.
摘要:
An aircraft may include a pair of wings. A forward swept winglet may be attached proximate to a wing tip of each wing. The forward swept winglet may include a leading edge and a trailing edge. The leading edge of each winglet may extend from the wing at a predetermined forward sweep angle relative to a line perpendicular to a chord of the wing tip in a direction corresponding to a forward portion of the aircraft.
摘要:
Apparatus and methods provide for a controllable upper surface blown (USB) nozzle aperture. Aspects of the disclosure provide a powered-lift aircraft that utilizes a controllable nozzle aperture to maximize the spreading of the engine exhaust flow over the wing and USB flap surfaces to increase lift when desirable and to minimize exhaust plume contact with the wing and USB flap surfaces when minimizing drag is desirable. The controllable USB nozzle aperture includes movable upper, lower, and side duct surfaces to dynamically vary the geometry of the nozzle exit aperture to minimize the height and maximize the width of the exit aperture for maximum spreading of the exhaust plume or to maximize the height and minimize the width of the exit aperture for minimizing the spreading of the exhaust plume and minimizing the associated drag.
摘要:
An aircraft may include a pair of wings. A forward swept winglet may be attached proximate to a wing tip of each wing. The forward swept winglet may include a leading edge and a trailing edge. The leading edge of each winglet may extend from the wing at a predetermined forward sweep angle relative to a line perpendicular to a chord of the wing tip in a direction corresponding to a forward portion of the aircraft.
摘要:
A winglet system for an aircraft wing may include an upper winglet and a lower winglet mounted to a wing tip. The lower winglet may have a static position when the wing is subject to a ground static loading. The lower winglet may be configured such that upward deflection of the wing under an approximate 1-g flight loading causes the lower winglet to move from the static position to an in-flight position and resulting in a relative span increase of the wing.
摘要:
A winglet system for an aircraft wing may include an upper winglet and a lower winglet mounted to a wing tip. The lower winglet may have a static position when the wing is subject to a ground static loading. The lower winglet may be configured such that upward deflection of the wing under an approximate 1-g flight loading causes the lower winglet to move from the static position to an in-flight position and resulting in a relative span increase of the wing.