Abstract:
Consistent with the present disclosure, one or more spare Widely Tunable Lasers (WTLs) are integrated on a PIC. In the event that a channel, including, for example, a laser, a modulator and a semiconductor optical amplifier in a transmitter or Tx PIC, or a laser, optical hybrid, and photodiodes, for example, in a receiver PIC (Rx PIC), includes one or more defective devices, a spare channel is selected that includes a widely tunable laser (WTL) which may be tuned to the wavelength associated with any of the channels on the PIC. Accordingly, the spare channel replaces the defective channel or the lowest performing channel and outputs modulated optical signals at the wavelength associated with the defective channel. Thus, even though a defective channel may be present, a die consistent with the present disclosure may still output or receive the desired channels because the spare channel replaces the defective channel. As a result, yields and minimum performance may improve compared to PICs that do not have a spare channel and manufacturing costs may be reduced. Alternatively, connections, such as fiber connections, may be made only to the operation or best performing channels.
Abstract:
A field emission cathode device includes a cathode substrate, a gate electrode, a first dielectric layer, a cathode electrode, and an electron emission layer. The gate electrode is located on a surface of the cathode substrate. The first dielectric layer is located on a surface of the gate electrode and defines a first opening to expose part of the gate electrode. The cathode electrode is spaced from the gate electrode through the first dielectric layer defining a second opening in alignment with the first opening. A field emission display using the field emission cathode device is also related.
Abstract:
A method for making cathode slurry is provided and includes the following steps. First, a number of electron emitters, an inorganic binder, and an organic carrier are provided. Second, the electron emitters, the inorganic binder, and the organic carrier are mixed to obtain a mixture. Third, the mixture is mechanically pressed and sheared.
Abstract:
An ionization vacuum gauge includes a cathode electrode, a gate electrode, and an ion collector. The cathode electrode includes a base and a field emission film disposed thereon. The gate electrode is disposed adjacent to the cathode electrode with a distance therebetween. The ion collector is disposed adjacent to the gate electrode with a distance therebetween. The field emission film of the cathode electrode includes carbon nanotubes, a low-melting-point glass, and conductive particles.
Abstract:
A method for making cathode slurry is provided and includes the following steps. First, a plurality of electron emitters, an inorganic binder, and an organic carrier are provided. Second, the plurality of electron emitters, the inorganic binder, and the organic carrier are mixed to obtain a mixture. Third, the mixture is mechanically pressed and sheared.
Abstract:
A field emission cathode structure includes a dielectric layer, a field emission unit, a grid electrode, and a conductive layer. The dielectric layer is positioned on the insulating substrate and defines a cavity. A field emission unit is attached on the cathode electrode and received in the cavity of the dielectric layer. The field emission unit is electrically attached to the cathode electrode. The grid electrode is located on the dielectric layer, and electrons emitted from the field emission unit emit through the grid electrode. The conductive layer is electrically attached to the grid electrode and insulated from the field emission unit. A field emission display device using the above-mentioned field emission cathode structure is also provided.
Abstract:
A field-emission-based flat light source includes the following: a light-permeable substrate; a plurality of line-shaped cathodes; an anode; a light-reflecting layer; and a fluorescent layer. The light-permeable substrate has a surface, and the line-shaped cathodes, with a plurality of carbon nanotubes formed and/or deposited thereon, are located on the surface of the light-permeable substrate. The anode faces the cathodes and is spaced from the cathodes to form a vacuum chamber. The light-reflecting layer is formed on the anode and faces the cathode. The fluorescent layer is formed on the light-reflecting layer.
Abstract:
A reference leak includes a leak layer formed of one of a metallic material, a glass material, and a ceramic material. The metallic material is selected from the group consisting of copper, nickel, and molybdenum. The leak layer comprises a number of substantially parallel leak through holes defined therein. The leak through holes may be cylindrical holes or polyhedrical holes. A length of each of the leak through holes is preferably not less than 20 times a diameter thereof. A diameter of each of the leak through holes is generally in the range from 10 nm to 500 nm. A length of each of the leak through holes is generally in the range from 100 nm to 100 μm. A leak rate of the reference leak is in the range from 10−8 to 10−15 tor×l/s. The leak through holes have substantially same length and diameter.
Abstract:
A field emission electron source includes at least one electron emission member. Each electron emission member includes a conductive body and an electron emission layer formed on the conductive body. The conductive body has an upper portion. The electron emission layer is formed on, at least, the upper portion of the conductive body. The electron emission layer includes a glass matrix; and at least one carbon nanotube, and a plurality of metallic conductive particles and getter powders dispersed in the glass matrix. A method for making such field emission electron source is also provided.
Abstract:
A field emission device (100) generally includes a front substrate (101) and a rear substrate (111) opposite thereto. The front substrate is formed with an anode (102). The rear substrate is formed with cathodes (112) facing the anode. A plurality of insulating portions (121) are formed on the rear substrate, each of which is arranged between every two neighboring cathodes. A plurality of gate electrodes are formed on top surfaces of the insulating portions 121. Each of the gate electrodes has a getter layer (123) thereon.