Abstract:
Various methods, systems, and apparatus for implementing aspects of a digital mapping system are disclosed. One such method includes sending a location request from a client-side computing device to a map tile server, receiving a set of map tiles in response to the location request, assembling said received map tiles into a tile grid, aligning the tile grid relative to a clipping shape, and displaying the result as a map image. One apparatus according to aspects of the present invention includes means for sending a location request from a client-side computing device to a map tile server, means for receiving a set of map tiles in response to the location request, means for assembling said received map tiles into a tile grid, means for aligning the tile grid relative to a clipping shape, and means for displaying the result as a map image. Such an apparatus may further include direction control or zoom control objects as interactive overlays on the displayed map image, and may also include route or location overlays on the map image.
Abstract:
Various methods, systems, and apparatus for implementing aspects of a digital mapping system are disclosed. One such method includes sending a location request from a client-side computing device to a map tile server, receiving a set of map tiles in response to the location request, assembling said received map tiles into a tile grid, aligning the tile grid relative to a clipping shape, and displaying the result as a map image. One apparatus according to aspects of the present invention includes means for sending a location request from a client-side computing device to a map tile server, means for receiving a set of map tiles in response to the location request, means for assembling said received map tiles into a tile grid, means for aligning the tile grid relative to a clipping shape, and means for displaying the result as a map image. Such an apparatus may further include direction control or zoom control objects as interactive overlays on the displayed map image, and may also include route or location overlays on the map image.
Abstract:
Various methods, systems, and apparatus for implementing aspects of a digital mapping system are disclosed. One such method includes sending a location request from a client-side computing device to a map tile server, receiving a set of map tiles in response to the location request, assembling said received map tiles into a tile grid, aligning the tile grid relative to a clipping shape, and displaying the result as a map image. One apparatus according to aspects of the present invention includes means for sending a location request from a client-side computing device to a map tile server, means for receiving a set of map tiles in response to the location request, means for assembling said received map tiles into a tile grid, means for aligning the tile grid relative to a clipping shape, and means for displaying the result as a map image. Such an apparatus may further include direction control or zoom control objects as interactive overlays on the displayed map image, and may also include route or location overlays on the map image.
Abstract:
Digital mapping techniques are disclosed that provide visually-oriented information to the user, such as driving directions that include visual data points along the way of the driving route, thereby improving the user experience. The user may preview the route associated with the driving directions, where the preview is based on, for example, at least one of satellite images, storefront images, and heuristics and/or business listings.
Abstract:
Digital tile-based mapping techniques are disclosed that enable efficient online serving of aesthetically pleasing maps. In one particular embodiment, an image tile-based digital mapping system is configured for generating map tiles during an offline session, and serving selected sets of those tiles to a client when requested. Also provided are solutions for handling map labels and other such features in a tile-based mapping system, such as when a map label crosses map tile boundaries. Various processing environments (e.g., servers or other computing devices) can be employed in the system.
Abstract:
Adaptive navigation techniques are disclosed that allow navigation systems to learn from a user's personal driving history. As a user drives, models are developed and maintained to learn or otherwise capture the driver's personal driving habits and preferences. Example models include road speed, hazard, favored route, and disfavored route models. Other attributes can be used as well, whether based on the user's personal driving data or driving data aggregated from a number of users. The models can be learned under explicit conditions (e.g., time of day/week, driver ID) and/or under implicit conditions (e.g., weather, drivers urgency, as inferred from sensor data). Thus, models for a plurality of attributes can be learned, as well as one or more models for each attribute under a plurality of conditions. Attributes can be weighted according to user preference. The attribute weights and/or models can be used in selecting a best route for user.
Abstract:
Various methods, systems, and apparatus for implementing aspects of a digital mapping system are disclosed. One such method includes sending a location request from a client-side computing device to a map tile server, receiving a set of map tiles in response to the location request, assembling said received map tiles into a tile grid, aligning the tile grid relative to a clipping shape, and displaying the result as a map image. Direction control or zoom control objects may be included as interactive overlays on the displayed map image. The displayed map image may also include route or location overlays.
Abstract:
A server system hosts a plurality of conversations. For a respective conversation the server system receives a first sequence of edits and a second sequence of edits to a respective content unit of the conversation from different participants of the conversation. The server system converts the first and second sequences of edits into respective first and second merged sequences of edits. The server system responds to a determination that the first merged sequence of edits and the second merged sequence of edits meet predefined conflict criteria by transforming the first and second merged sequences of edits. The server system sends the respective transformed sequences of edits to respective participants so that respective participants can apply either the first sequence of edits followed by the second transformed sequence of edits or applying the second sequence of edits followed by the first transformed sequence of edits to produce a same result.
Abstract:
Adaptive navigation techniques are disclosed that allow navigation systems to learn from a user's personal driving history. As a user drives, models are developed and maintained to learn or otherwise capture the driver's personal driving habits and preferences. Example models include road speed, hazard, favored route, and disfavored route models. Other attributes can be used as well, whether based on the user's personal driving data or driving data aggregated from a number of users. The models can be learned under explicit conditions (e.g., time of day/week, driver ID) and/or under implicit conditions (e.g., weather, drivers urgency, as inferred from sensor data). Thus, models for a plurality of attributes can be learned, as well as one or more models for each attribute under a plurality of conditions. Attributes can be weighted according to user preference. The attribute weights and/or models can be used in selecting a best route for user.
Abstract:
A server system hosts a plurality of conversations. For a respective conversation the server system receives units of content from respective participants in the conversation. The server system receives a sequence of edits to a respective content unit of the conversation from at least one participant other than an initial author of the content unit to produce a revised content unit. The server system stores a respective timestamp for each distinct edit in the sequence of edits to the content unit, including distinct timestamps for at least first and second edits to the content unit. The server system updates the conversation with the revised content unit and automatically provides the updated conversation to the one or more server systems hosting conversations for the participants in the conversation.