Abstract:
Signal transmission in opto-electronic devices by moving the quiescent component of a differential signal. Exemplary circuits and techniques are disclosed for moving the quiescent component of the differential output signal of a preamplifier amplifying the output of a photodiode to provide an indication of the received signal strength. The quiescent component is moved in response to the average diode current, either symmetrically by imposing the same change on the differential outputs of the preamplifer, or unsymmetrically such as by imposing a change on one of the differential outputs only, and either linearly or nonlinearly with the average diode current. Detection in a postamplifier may be by open circuit techniques, such as by comparing the quiescent output of the preamplifier with a fixed reference, or by using feedback techniques that can cancel or alter the imposed quiescent component. Also exemplary embodiments for use in conjunction with opto-electronic transmitters are disclosed.
Abstract:
A data communication cable assembly, comprising: a first connector configured to connect to a first device, including a first coherent optical transmitter configured to: receive a first electrical data signal from the first device; and coherently modulate a first optical carrier with the first electrical data signal to generate a first optical data signal; a cable including a first end mechanically coupled to the first connector, wherein the cable comprises at least one optical fiber; and a second connector mechanically coupled to a second end of the cable, and configured to connect to a second device, including a first coherent optical receiver configured to: receive the first optical data signal from the first coherent optical transmitter via the at least one optical fiber; and coherently demodulate the first optical data signal using the first or a second optical carrier to regenerate the first electrical data signal for the second device.
Abstract:
Disclosed is a circuit and method for compensating DC output level variations in a differential emitter-coupled logic circuit. The DC output level compensating differential emitter-coupled logic circuit includes a differential pair, an output stage, and a compensation circuit. The differential pair is configured to receive a differential signal and is operative to generate a differential signal. The output stage is coupled to the differential pair to receive the differential signal and is operative to generate a differential output signal at a DC output voltage level. The compensation circuit is coupled to the differential pair and the output stage and is operative to develop a compensating voltage drop in the differential pair so as to compensate for a change in the DC output voltage level when the temperature varies such that the output stage outputs the differential output signal at the DC output voltage level.
Abstract:
Dual laser-power-level control and calibration system for burst-mode and continuous-mode transmitter. A first signal path receives a transmit signal that also drives the transmit laser, and a second signal path receives the output of a monitor diode. The first and second signal paths include filtering so that the two signal paths have a similar frequency response. The upper and lower excursions in both signal paths are compared, and the power levels of the optical transmitter are adjusted based on those comparisons. Embodiments with one control loop and two control loops are disclosed.
Abstract:
Disclosed is a differential amplifier including an emitter follower pair, a first differential pair, and a main differential amplifier. The emitter follower pair is operative to receive an input differential voltage signal for shifting the input differential voltage signal to develop a shifted differential voltage signal. The first differential pair is configured to feed a first differential current inversely to the emitter follower pair so that a transconductance of the emitter follower pair changes inversely to compensate for a change in a transconductance of the first differential pair. The main differential amplifier is coupled to receive the shifted differential voltage signal and is configured to amplify the shifted differential voltage signal to generate an output voltage signal.
Abstract:
Dual laser-power-level control and calibration system for burst-mode and continuous-mode transmitter. A first signal path receives a transmit signal that also drives the transmit laser, and a second signal path receives the output of a monitor diode. The first and second signal paths include filtering so that the two signal paths have a similar frequency response. The upper and lower excursions in both signal paths are compared, and the power levels of the optical transmitter are adjusted based on those comparisons. Embodiments with one control loop and two control loops are disclosed.
Abstract:
Circuit and method for generating a signal for use in locking a second signal on a first signal. The first and second signals have an associated frequency. A first beat note signal and a second beat note signal are generated from the first and second signals, respectively, when the frequencies of the first and second signals are not equal. The circuit includes a first and second flip-flop and detector circuitry. The first flip-flop is configured to receive the first and second beat note signals for generating a first state signal. The first flip-flop generates the first state signal by sampling the second beat note signal at a first periodic interval of the first beat note signal. The second flip-flop is configured to receive the first and second beat note signals for generating a second state signal. The second flip-flop generates the second state signal by sampling the second beat note signal at a second periodic interval of the first beat note signal. The detector circuitry is coupled to receive the first and second state signals from the first and second flip-flops for detecting a polarity of the frequency difference between the first and second signals. The polarity of the frequency difference is defined in a tri-state having a positive state, a negative state, and a zero state.