Abstract:
The antimicrobial acid-catalyzed coating composition of the invention is an acid-catalyzed coating composition formulated with at least one antimicrobial agent to provide antimicrobial activity to the coating composition and an article coated therewith.
Abstract:
A machine, such as a motor or generator, includes a rotatable rotor assembly comprising a plurality of salient poles and a stationary stator assembly comprising a superconducting field coil. The superconducting field coil and the salient poles are configured relative to each other such when the rotor assembly is rotated relative to the stator assembly around a predetermined axis, a rotating magnetic field is produced with an airgap flux direction substantially along the predetermined axis.
Abstract:
The present application and the resultant patent provide a superconducting electrical machine. The superconducting electrical machine may include an armature coil made of a high temperature superconducting material, a cooling system, and a field coil. The cooling system may include a cryostat surrounding the armature coil and a foam insulation surrounding the cryostat.
Abstract:
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Abstract:
A portable power system has a turbine engine generating mechanical energy. A homopolar electrical machine receives this energy. The homopolar electrical machine has a single stationary superconducting field coil configured to create a magnetic field. A homopolar rotor is configured to rotate within the magnetic field such that a rotating magnetic field is created in a stationary winding by interaction of the rotating permeance wave produced by the homopolar rotor and the magnetic field produced by the single stationary field coil. The homopolar electrical machine is configured as a generator and produces electrical power for the portable power system.
Abstract:
A fluid transfer device and a method for conveying a fluid from a fluid transfer device to a rotating member are provided. The fluid transfer device includes a housing disposed around a first rotating member extending along an axis. The housing has a first plurality of apertures extending therethrough that communicate with the fluid source. The first rotating member has a second plurality of passageways extending from a first exterior surface of the first rotating member to a third passageway extending generally axially within the first rotating member. Further, at least a portion of the second plurality of passageways communicate with at least a portion of the first plurality of apertures, wherein the fluid flows through the first plurality of apertures and the second plurality of passageways to the third passageway in the first rotating member.
Abstract:
A superconducting coil assembly includes a plurality of circuit branches. Each circuit branch of the plurality of circuit branches is electrically connected in parallel to each other. Each circuit branch is disposed at a structural core. Each circuit branch of the plurality of circuit branches includes a coil wound from a superconducting wire and a resistive means electrically connected in series to the coil. The coil from each circuit branch forms a plurality of coils with respect to the plurality of circuit branches.
Abstract:
A machine includes a rotatable rotor assembly having a number of salient poles. The machine further includes a stationary stator assembly having concentric inner and outer stators, at least one stationary superconducting field coil and at least one stator coil. The stationary superconducting field coil is disposed between the inner and outer stators and is mounted on at least one of the inner and outer stators. The stationary superconducting field coil and the salient poles are configured relative to each other, such that when the rotor assembly is rotated relative to the stator assembly around a predetermined axis, a rotating magnetic field is produced with an airgap flux direction substantially along the predetermined axis. The interaction between the stationary superconducting field coil and the rotating poles provides the only source of a time varying magnetic flux supplied to the stator coil.
Abstract:
A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.
Abstract:
The present application and the resultant patent provide a superconducting electrical machine. The superconducting electrical machine may include an armature coil made of a high temperature superconducting material, a cooling system, and a field coil. The cooling system may include a cryostat surrounding the armature coil and a foam insulation surrounding the cryostat.