Abstract:
A method of verifying the identification of fluids to be supplied successively through a fluid-supply hose that selectively connects to successive movable, RFID-tagged fluid containers includes providing an RFID reading unit including an antenna. A sequence of reference container identification codes is received. A container-present indication indicating one of the containers is positioned so that its RFID tag is in the antenna range is received. In response, the RFID tag of that container is read using the RFID reading unit to determine an identification code of the container. A controller automatically verifies the determined container identification code against the first reference identification code in the sequence using a controller. The starting through verifying steps are repeated, using successive values from the sequence in the verifying step, until all values in the sequence have been verified against container identification codes read using the RFID reading unit.
Abstract:
A media diverter system for directing a media sheet traveling along an input media path into either a first media path or a second media path. One or more roller assemblies are provided including a media-guiding roller having one or more grooves formed around the exterior surface, and an air source for selectively providing an air flow into one or more of the grooves, the air flow being directed between the media sheet and the exterior surface of the media-guiding roller thereby producing a Bernoulli force to draw the media sheet toward the media-guiding roller. A controller selectively activates the air source in at least one of the roller assemblies while the corresponding media-guiding roller rotates around its roller axis to draw the media sheet toward the exterior surface of the media-guiding roller, thereby directing the media sheet into either the first media path or a second media path.
Abstract:
An RFID reader system has an RFID tag and an RFID reader. The tag authorizes the RFID reader by receiving a plurality of successively-transmitted initial RFID read signals and determining respective initial-read signal power levels of the received initial RFID read signals. Using the determined initial-read signal power levels, a controller automatically selects an authorization sequence. A plurality of successively-transmitted authorization RFID signals are received sequentially, and respective authorization-signal power levels of the received authorization RFID read signals are determined. The determined authorization-signal power levels are automatically compared to the authorization sequence using the controller, so that the RFID reader is authorized if the determined authorization-signal power levels correspond to the authorization sequence.
Abstract:
A method of verifying the identification of fluids to be supplied successively through a fluid-supply hose that selectively connects to successive movable, RFID-tagged fluid containers includes providing an RFID reading unit including an antenna. A sequence of reference container identification codes is received. A container-present indication indicating one of the containers is positioned so that its RFID tag is in the antenna range is received. In response, the RFID tag of that container is read using the RFID reading unit to determine an identification code of the container. A controller automatically verifies the determined container identification code against the first reference identification code in the sequence using a controller. The starting through verifying steps are repeated, using successive values from the sequence in the verifying step, until all values in the sequence have been verified against container identification codes read using the RFID reading unit.
Abstract:
A printing system includes at least one print module for printing on a receiver media; a mechanism for moving the receiver media past the at least one print module; at least a first and second optical encoder sensor for measuring at least one of displacement and velocity of the receiver media which provides an output signal to a controller; wherein the controller, in response to the signals received from the at least two optical encoder sensors, controls the operation of the at least one print module.
Abstract:
A printing system includes at least one print module for printing on a receiver media; a mechanism for moving the receiver media past the at least one print module; at least a first and second optical encoder sensor for measuring at least one of displacement and velocity of the receiver media which provides an output signal to a controller; wherein the controller, in response to the signals received from the at least two optical encoder sensors, controls the operation of the at least one print module.
Abstract:
A method for heating a substrate in a printing device, the method comprises positioning at least one radiant heater along a printing path of a printing device, the at least one radiant heater includes at least two emitters; measuring a voltage and current supplied to each of the at least two emitters; determining an electrical power supplied to each of the at least two emitters; and adjusting the electrical power supplied to at least one of the at least two emitters if a difference in power supplied to each of the at least two emitters exceeds a threshold.
Abstract:
An imaging module including a plurality of imaging systems for capturing images of a receiver medium. An illumination system illuminates the receiver medium with an illumination pattern. First and second imaging systems are positioned to capture images of the receiver medium, each including at least a portion of the illumination pattern. The first and second images are analyzed to determine a relative position of the illumination pattern in the first and second images. Imaging system alignment parameters for use in aligning images captured with the first and second imaging systems are determined responsive to the determined relative position.
Abstract:
A method of detecting an RFID tag includes transmitting a bait RFID read signal at a bait power level and a simulated response signal at a simulated-response power level. A selected reader frequency is monitored for a selected detection time. A skimmer is determined to be present if a skimmer RFID read signal is detected during that time. If a skimmer is not determined to be present, multiple read signals are transmitted sequentially, each signal at a respective read power level. At least one of the read power levels is lower than the bait power level, at least one of the read power levels is lower than the simulated-response power level, and at least two of the read power levels are different from each other. A selected response frequency for a tag is monitored for a response from an RFID tag.
Abstract:
An RFID reader system has an RFID tag and an RFID reader. The tag authorizes the RFID reader by receiving a plurality of successively-transmitted initial RFID read signals and determining respective initial-read signal power levels of the received initial RFID read signals. Using the determined initial-read signal power levels, a controller automatically selects an authorization sequence. A plurality of successively-transmitted authorization RFID signals are received sequentially, and respective authorization-signal power levels of the received authorization RFID read signals are determined. The determined authorization-signal power levels are automatically compared to the authorization sequence using the controller, so that the RFID reader is authorized if the determined authorization-signal power levels correspond to the authorization sequence.