Abstract:
A method of producing a magnetic recording medium produces a medium having a magnetic recording layer disposed above a nonmagnetic intermediate layer, The nonmagnetic intermediate layer is formed by a sputtering using a target made of an oxide material. Oxygen gas or carbon dioxide gas is supplied during the sputtering in order to suppress a state where an oxygen supply becomes insufficient due to separation of oxygen atoms from the oxide material at a time of plasma generation.
Abstract:
A magnetic recording medium includes a nonmagnetic granular layer that has a granular structure in which a plurality of nonmagnetic grains made of a nonmagnetic material are separated from one another by a Cr oxide. The magnetic recording medium further includes a magnetic granular layer that is formed on the nonmagnetic granular layer and has a granular structure in which a plurality of magnetic grains made of a magnetic material are separated from one another by a nonmagnetic material.
Abstract:
According to an aspect of an embodiment, a magnetic recording medium includes a substrate, and a first granular layer formed over the substrate, the first granular layer having a plurality of first magnetic particles and Si oxide separating the plurality of first magnetic particles. The magnetic recording medium further includes a second granular layer formed over the first granular layer, the second granular layer having a plurality of second magnetic particles and Ti oxide separating the plurality of second magnetic particles.
Abstract:
An under layer, a FeCoB seed layer, a crystalline orientation control layer having an fcc structure, a non-magnetic underlying layer, a first recording layer, a second recording layer, and a protective layer are formed on a substrate. The under layer includes three layers: a first soft magnetic layer, a non-magnetic spacer layer, and a second soft magnetic layer. The first recording layer has a granular structure in which magnetic particles are dispersed in a non-magnetic material, and the second recording layer has a non-granular structure.
Abstract:
The present invention provides a high-density, low-noise magnetic recording medium. This magnetic recording medium includes a substrate, a non-magnetic underlayer formed on the substrate, and a magnetic recording layer formed on the underlayer. The magnetic recording layer contains cobalt as the main component, 10 atm % to 18 atm % of chromium, 5 atm % to 20 atm % of platinum, and 10 atm % to 20 atm % of boron.
Abstract:
A magnetic recording medium includes a non-magnetic granular layer, and a recording layer provided on the non-magnetic granular layer, wherein the recording layer includes a first granular magnetic layer provided on the non-magnetic granular layer, and a second granular magnetic layer provided on the first granular magnetic layer, and a non-magnetic material magnetically separating metal grains of the non-magnetic granular layer is different from a non-magnetic material magnetically separating magnetic grains of the first granular magnetic layer.
Abstract:
This magnetic recording medium has a substrate, a nonmagnetic granular layer formed above the substrate and a recording layer formed on the nonmagnetic granular layer. The nonmagnetic granular layer is made of CoCr alloy with an hcp or an fcc crystal structure in which a nonmagnetic material segregates virtually-columnar magnetic grains. The magnetic recording medium and the magnetic storage apparatus in which the medium is used have improved reading/writing performances.
Abstract:
A magnetic recording medium according to the present invention includes a nonmagnetic base material, a soft magnetic under layer, an interlayer, a recording layer and a protective layer, which are stacked over the base material. The soft magnetic under layer is formed of a lower soft magnetic layer, a magnetic domain control layer (or a nonmagnetic layer) and an upper soft magnetic layer. The lower and upper soft magnetic layers are each made of a material amorphized by adding at least one of zirconium (Zr) and tantalum (Ta) to an iron-cobalt (Fe—Co) alloy which is composed to form a body-centered cubic (bcc) structure.
Abstract:
According to the present invention, provided is a magnetic recording medium 11 comprising: a non-magnetism base member 1; a lower soft magnetic underlying layer 2 formed on the non-magnetism base member 1; a non-magnetic layer 4 formed on the lower soft magnetic underlying layer 2; an upper soft magnetic underlying layer 6 formed on the non-magnetic layer 4; and a recording layer 9 having a perpendicular magnetic anisotropy, the recording layer 9 being formed on the upper soft magnetic underlying layer 6, wherein crystalline magnetic layers 3 and 5 are formed between the lower soft magnetic underlying layer 2 and the non-magnetic layer 4 or between this non-magnetic layer 4 and the upper soft magnetic underlying layer 6.
Abstract:
A magnetic storage medium has a non-magnetic substrate and a recording layer. The recording layer comprises a non-magnetic matrix and crystal grains consisting of a ferromagnetic material. Each of the crystal grains dispersed in the recording layer is a columnar shaped grain which penetrates a suface of the recording layer and has height of 30 nm or less, and a mean value of grain sizes of the crystal grains in an internal direction of the recording layer is 15 nm or less. (Ku·V)/(kB·T) is not less than 60. A mean value Hk of anisotropic magnetic fields of the plurality of crystal grains is 20 kOe or less.