Abstract:
Method of detecting a touched position on a touch display of a display apparatus includes determining an amount of an electrical charge generated by a touch on the touch display panel of a display apparatus, determining a difference between the amount of the electrical charge generated from the touch and an amount of a reference electrical charge and comparing this difference to a threshold value, detecting the position of the touch if it is determined that the difference between the amount of the electrical charge generated from the touch and the amount of the reference electrical charge is substantially the same as or larger than the threshold value and detecting the touched position using a pressure according to the touch if it is determined that difference between the amount of the electrical charge and the amount of the reference voltage is smaller than the threshold value.
Abstract:
A display apparatus includes a display panel that displays an image using a first light, a light guide part positioned at a front side of the display panel, a backlight unit, an image information collecting part, and a processing part. The light guide part emits a second light different from the first light and guide the second light, and the backlight unit is positioned at a rear side of the display panel to provide the first light to the display panel. The image information collecting part photographs the light emitted from the light guide part to output image information. The processing part processes the image information to generate a coordinate value of a position at which an object provided on the light guide plate is positioned.
Abstract:
A service providing method of a server is provided. The method includes registering a service hub according to a service request; setting a service hub program corresponding to the service hub; receiving a request for the service hub program from a user terminal device belonging to an organization associated with the service hub; providing the service hub program to the user terminal device; and providing an application program corresponding to the user terminal device and the service hub program to the user terminal device.
Abstract:
An application processor includes a system memory unit, peripheral devices, a control unit and a central processing unit (CPU). The system memory unit includes one page table. The peripheral devices share the page table and perform a DMA (Direct Memory Access) operation on the system memory unit using the page table, where each of the peripheral devices includes a memory management unit having a translation lookaside buffer. The control unit divides a total virtual address space corresponding to the page table into sub virtual address spaces, assigns the sub virtual address spaces to the peripheral devices, respectively, allocates and releases a DMA buffer in the system memory unit, and updates the page table, where at least two of the sub virtual address spaces have different sizes from each other. The CPU controls the peripheral devices and the control unit. The application processor reduces memory consumption.
Abstract:
A display apparatus includes a display panel that displays a second image in a 3D mode, a barrier panel that forms a barrier pattern that separates the second image into a left-eye image and a right-eye image, a touch sensing part that includes third electrodes capacitively coupled to a portion of the electrodes included in the barrier panel, and a coordinate calculator. The coordinate calculator measures a variation of capacitance between the portion of the electrodes included in the barrier panel and the third electrodes.
Abstract:
Methods and apparatus are provided for providing a hub service is provided. Access is provided to a user terminal device. It is determined whether the user terminal device is a pre-registered device. A service hub program set for the user terminal is transmitted from the server to the user terminal device, when the user terminal device is the pre-registered device. At least one application program corresponding to the service hub program and the user terminal device is transmitted from the server to the user terminal device.
Abstract:
A light sensing assembly includes a first light guide plate (“LGP”), a light-emitting diode (“LED”) part, an infrared LED part, a second LGP and a first sensor array. The LED part is at a side portion of the first LGP and emits white lights of a displayed image. The infrared LED part emits infrared lights of a detected touch. The second LGP is below the first LGP. The second LGP guides a path of the infrared lights of the detected touch inputted in accordance with a touch operation. The first sensor array is at a side portion of the second LGP and senses the reflected infrared lights which are guided by the second LGP.
Abstract:
A liquid crystal display is provided that includes: a first display panel including a thin film transistor and a plurality of pixel electrodes; a second display panel facing the first display panel with a cell gap therebetween; a lower resistive layer disposed on the first display panel; an upper resistive layer disposed on the second display panel; and a sensing spacer connecting the lower resistive layer and the upper resistive layer.
Abstract:
A display apparatus includes a display panel that displays an image using a first light, a light guide part positioned at a front side of the display panel, a backlight unit, an image information collecting part, and a processing part. The light guide part emits a second light different from the first light and guide the second light, and the backlight unit is positioned at a rear side of the display panel to provide the first light to the display panel. The image information collecting part photographs the light emitted from the light guide part to output image information. The processing part processes the image information to generate a coordinate value of a position at which an object provided on the light guide plate is positioned.
Abstract:
A method and apparatus for dynamic resource allocation in a system having at least one processing unit are disclosed. The method of dynamic resource allocation includes receiving information on a task to which resources are allocated and partitioning the task into one or more task parallel units; converting the task into a task block having a polygonal shape according to expected execution times of the task parallel units and dependency between the task parallel units; allocating resources to the task block by placing the task block on a resource allocation plane having a horizontal axis of time and a vertical axis of processing units; and executing the task according to the resource allocation information. Hence, CPU resources and GPU resources in the system can be used in parallel at the same time, increasing overall system efficiency.