Abstract:
In one embodiment, a method includes forming a conducting material above an insulating film, applying a mask to portions of the conducting material in a shape of a TFC structure, removing exposed portions of the conducting material to form the TFC structure, depositing an insulating film above the TFC structure, and planarizing the insulating film to form a planar upper surface of the insulating film. In another embodiment, a magnetic head includes a TFC structure positioned between insulating films and a magnetic element positioned above the TFC structure, the TFC structure configured for providing localized thermal protrusion of the magnetic head on a media facing surface thereof, wherein an upper surface of an upper of the insulating films is planar, the magnetic element includes at least one of a main magnetic pole and a read sensor, and the TFC structure is configured for providing thermal protrusion of the magnetic element.
Abstract:
A thin-film magnetic head having little temperature rise in the element, good heat dissipation and a short magnetic path length (narrow coil pitch) and manufacturing method for same is provided. To form the coil of the thin-film magnetic head, a lower coil is first formed and after forming alumina and an inorganic compound containing alumina, a trench is formed for the upper coil by reactive ion etching. The lower coil allows uniform etching at this time and functions as a film to prevent loading effects occurring during reactive ion etching. This trench is then plated in copper and chemical mechanical planarization performed to form the upper layer coil as the dual-layer coil of the present invention. Heat from the coil is efficiently radiated towards the substrate by alumina and an inorganic compound containing alumina with good heat propagation. The ratio of alumina or inorganic compound containing alumina in the lower coil can be selected by reactive ion etching so that an upper coil trench functioning as an etching stopper can be securely formed to allow forming a stable coil film thickness and a short magnetic path length.
Abstract:
In one embodiment, a method includes forming a conducting material above an insulating film, applying a mask to portions of the conducting material in a shape of a TFC structure, removing exposed portions of the conducting material to form the TFC structure, depositing an insulating film above the TFC structure, and planarizing the insulating film to form a planar upper surface of the insulating film. In another embodiment, a magnetic head includes a TFC structure positioned between insulating films and a magnetic element positioned above the TFC structure, the TFC structure configured for providing localized thermal protrusion of the magnetic head on a media facing surface thereof, wherein an upper surface of an upper of the insulating films is planar, the magnetic element includes at least one of a main magnetic pole and a read sensor, and the TFC structure is configured for providing thermal protrusion of the magnetic element.
Abstract:
According to one embodiment, a magnetic data system includes a magnetic disk medium, a magnetic head having a writer element and/or a reader element, an exothermic resistor element for thermal fly-height control (TFC), a contact detection sensor having a resistor element and at least one contact detection electrode, and an insulating film on a medium facing side of the magnetic head to protect the contact detection sensor, the insulating film having a thickness greater than the contact detection electrode, a drive mechanism for passing the magnetic disk medium over the magnetic head, and a controller electrically coupled to the magnetic head for controlling operation of the magnetic head, wherein the controller adjusts magnetic spacing between the magnetic head and the magnetic disk medium via thermal distortion of the exothermic resistor element. The contact detection sensor may be used as a second TFC resistor element.
Abstract:
A thermally actuated head for magnetic head for magnetic data recording having a contact sensor for detecting contact between the head and a magnetic disk. The contact sensor includes a thermal sensor film and first and second leads, wherein the leads extend at least as far from the ABS as the thermal sensor film. More preferably the leads extend slightly further from the ABS than the sensor film so that contact between the magnetic disk and the contact sensor occurs at the leads rather than at the sensor film. The sensor film can be constructed of NiFe, preferably having 30-70 atomic percent Ni or more preferably 40-60 atomic percent Ni or most preferably 40-50 atomic percent Ni. The leads are preferably constructed of one or more of Ru, Rh or Ta or an alloy whose primary constituents are Ru, Rh or Ta.
Abstract:
Embodiments of the present invention provide a method of manufacturing a magnetic head slider, the method being adapted so that throat height of a main magnetic pole piece of a perpendicular recording magnetic head can be controlled with high accuracy. According to one embodiment, a first Electrical Lapping Guide element (ELG) is disposed on the same layer as a plated underlayer of a shield of one write head in a row bar, and other ELGs are disposed on the same layer as that of a main magnetic pole piece of another write head. Front end positions (Tops) are detected from changes in resistance values of the other ELGs and an ending position of lapping is calculated. Since the front end positions (Tops) of the other ELGs are accurate, it is possible to assign a correlation to throat height “Th” of the main magnetic pole piece and the resistance value of the first ELG by detecting this resistance value existing when the front end positions (Tops) are detected.
Abstract:
Embodiments of the present invention provide a method of manufacturing a magnetic head slider, the method being adapted so that throat height of a main magnetic pole piece of a perpendicular recording magnetic head can be controlled with high accuracy. According to one embodiment, a first Electrical Lapping Guide element (ELG) is disposed on the same layer as a plated underlayer of a shield of one write head in a row bar, and other ELGs are disposed on the same layer as that of a main magnetic pole piece of another write head. Front end positions (Tops) are detected from changes in resistance values of the other ELGs and an ending position of lapping is calculated. Since the front end positions (Tops) of the other ELGs are accurate, it is possible to assign a correlation to throat height “Th” of the main magnetic pole piece and the resistance value of the first ELG by detecting this resistance value existing when the front end positions (Tops) are detected.
Abstract:
There is provided a thin film magnetic head, with letting a distance of a portion, where a width of a track portion in an upper magnetic pole changes, from a flying plane from a medium be Ly, and letting a distance of a portion, where a distance between right and left of a surface portion in a lower magnetic pole in a track width direction is wider than the width of the upper magnetic pole in the track width direction, from the flying plane from a medium be Tp, by creating a thin film magnetic head that is equipped with a recording head that has a relation of Tp≦Ly, it becomes possible to reduce a needless leakage magnetic field in the track width direction with securing magnetic field strength.
Abstract:
At least one of lower and upper magnetic cores is composed of magnetic films each of which contains two or more elements of Co, Ni, and Fe, which are formed by electroplating in a plating bath with pH 2 or less, and which have a saturation magnetic flux density of 23,000 gauss or more.
Abstract:
Embodiments of the present invention provide a perpendicular magnetic recording head including a coil having small resistance. According to one embodiment, a nonmagnetic insulating layer formed on a main magnetic pole and a magnetic yoke are etched to form a recessed portion. The thickness of a conductive layer is increased by the depth of the recessed portion in a process for forming the conductive layer of the upper coil on the recessed portion to reduce resistance of the coil. Simultaneously with the formation of the recessed portion, a part of a second layer of a connection tab is removed. Simultaneously with the formation of the conductive layer of the upper coil, a space in which the part of the second layer of the connection tab is removed is filled with the same material as that of the conductive layer to further reduce the resistance of the entire coil.