摘要:
An organic light emitting diode device includes a gate electrode of a first transistor on a substrate; a gate insulation film on the gate electrode of the first transistor; a source electrode of a second transistor on the gate insulation film and overlapping with the gate electrode of the first transistor; a contact hole exposing the gate electrode of the first transistor and the source electrode of the second transistor; a conductive wiring in the contact hole, for electrically connecting the gate electrode of the first transistor and the source electrode of the second transistor.
摘要:
A method of manufacturing a display device includes forming a gate electrode on a substrate, a gate insulating layer on the gate electrode, and an active layer on the gate insulating layer, the gate electrode made of extrinsic polycrystalline silicon, the active layer made of intrinsic polycrystalline silicon; forming an etch stopper on the active layer; forming source and drain electrodes spaced apart from each other on the etch stopper; forming an ohmic contact layer each between a side of the active layer and the source electrode and between an opposing side of the active layer and the drain electrode; forming a gate line connected to the gate electrode; and forming a data line crossing the gate line.
摘要:
A method of manufacturing a display device includes forming a gate electrode on a substrate, a gate insulating layer on the gate electrode, and an active layer on the gate insulating layer, the gate electrode made of extrinsic polycrystalline silicon, the active layer made of intrinsic polycrystalline silicon; forming an etch stopper on the active layer; forming source and drain electrodes spaced apart from each other on the etch stopper; forming an ohmic contact layer each between a side of the active layer and the source electrode and between an opposing side of the active layer and the drain electrode; forming a gate line connected to the gate electrode; and forming a data line crossing the gate line.
摘要:
An array substrate for a display device includes: a substrate; first and second gate electrodes of impurity-doped polycrystalline silicon on the substrate; a gate insulating layer on the first and second gate electrodes; first and second active layers of intrinsic polycrystalline silicon on the gate insulating layer, the first and second active layers corresponding to the first and second active layers, respectively; an interlayer insulating layer on the first and second active layers and including first to fourth active contact holes, the first and second active contact holes exposing side portions of the first active layer, the third and fourth active contact holes exposing side portions of the second active layer; first and second ohmic contact layers of impurity-doped amorphous silicon on the interlayer insulating layer, the first ohmic contact layer contacting the first active layer through the first and second active contact holes, the second ohmic contact layer contacting the second active layer through the third and fourth active contact hole; first source and drain electrodes on the first ohmic contact layer and second source and drain electrodes on the second ohmic contact layer; a data line on the interlayer insulating layer, the data line connected to the first source electrode; a first passivation layer on the first source and drain electrodes, the second source and drain electrodes and the data line; a gate line on the first passivation layer, the gate line connected to the first gate electrode and crossing the data line to define a pixel region; a second passivation layer on the gate line; and a pixel electrode on the second passivation layer, the pixel electrode connected to the second drain electrode.
摘要:
An array substrate for an organic electroluminescent device includes a substrate; first and second gate electrodes; first and second gate insulating layers; first and second active layers; an interlayer insulating layer; first to fourth ohmic contact layers; first and second source electrodes; first and second drain electrodes; a data line connected to the first source electrode; a first power line connected to the second source electrode; a first passivation layer on the first and second source electrodes; a gate line contacting the first gate electrode; a second passivation layer on the gate line; a pixel electrode on the second passivation layer and contacting the second drain electrode; an organic luminescent layer on the pixel electrode; and a reference electrode on the organic luminescent layer, wherein portions of the pixel electrodes respectively contacting the organic luminescent layers in one pixel region and in another one pixel region have different heights from the substrate.
摘要:
An organic light emitting diode device includes a gate electrode of a first transistor on a substrate; a gate insulation film on the gate electrode of the first transistor; a source electrode of a second transistor on the gate insulation film and overlapping with the gate electrode of the first transistor; a contact hole exposing the gate electrode of the first transistor and the source electrode of the second transistor; a conductive wiring in the contact hole, for electrically connecting the gate electrode of the first transistor and the source electrode of the second transistor.
摘要:
Disclosed is array substrate including a pixel region having a switching region, a driving region and a storage region. A switching TFT in the switching region includes a first gate electrode, a first gate insulating layer, a switching active layer on the first gate insulating layer, a switching source electrode on a first switching ohmic contact layer, and a switching drain electrode on a second switching ohmic contact layer; a driving TFT in the driving region is connected to the switching TFT and includes a first gate electrode, a second gate insulating layer, a driving active layer on the second gate insulating layer, a driving source electrode on a first driving ohmic contact layer, and a driving drain electrode on a second driving ohmic contact layer; wherein at least one of the switching and driving TFTs further includes a second gate electrode over the switching or driving active layers.
摘要:
A thin film transistor fabrication method allows forming a first photoresist pattern on a triple layer of insulation, conductive and metal films opposite to a semiconductor pattern. A first metal pattern and a conductive pattern are formed through an etch process before forming source and drain regions through a first ion injection process. A second photoresist pattern with a narrower width than that of the first photoresist pattern is derived from the first photoresist pattern. The first metal pattern is reformed into a second metal pattern with a narrower width than that of the second photoresist pattern. A process is performed that includes removing the second photoresist pattern, forming LDD (Lightly Doped Drain) regions in the semiconductor pattern, and forming GOLDD (Gate Overlap LDD) regions in the semiconductor pattern. A second insulation film is formed before forming source and drain electrodes on the second insulation film.
摘要:
A method of fabricating an array substrate for an organic electroluminescent device includes forming a semiconductor layer of polysilicon in an element region, and a semiconductor pattern of polysilicon in a storage region on a substrate; forming a multiple-layered gate electrode corresponding to a center portion of the semiconductor layer and a first storage electrode corresponding to the semiconductor pattern; performing an impurity-doping to make a portion of the semiconductor layer not covered by the gate electrode into an ohmic contact layer and make the semiconductor pattern into a second storage electrode; forming source and drain electrodes and a third storage electrode corresponding to the first storage electrode; forming a first electrode contacting the drain electrode and a fourth storage electrode corresponding to the third storage electrode.
摘要:
An organic light emitting device including a first electrode disposed on a substrate, a separator disposed on the first electrode in a lattice shape and having a groove-shaped isolation portion that gradually expands from an entrance toward an inside of the isolation portion, organic light emitting patterns disposed on the first electrode surrounded by the separator, the organic light emitting patterns being separated by the isolation portion, and second electrodes disposed on the organic light emitting patterns and separated by the isolation portion.