Abstract:
The present invention is a modular lid system for an underwater swimming pool cover or other underwater enclosure. The modular lid has a rigid lid portion which has an overall buoyancy such that the lid portion closes the enclosure underwater by force of gravity. The modular lid system also has a remote power pack for providing a source of hydraulic power to the modular lid. The remote power pack is located at a position remote from the swimming pool. The remote power pack includes a hydraulic pump and a hydraulic drive mechanism is actuated by the remote power pack. The drive mechanism has a predetermined range of movement. A decoupled linkage mechanism extends between the hydraulic drive mechanism and the lid portion for causing limited opening movement thereof. The limited opening movement corresponds to the predetermined range of movement of the hydraulic drive mechanism. Thus, the decoupled linkage mechanism disengages from the lid portion during closing movement of the linkage mechanism and allows for manual opening movement of the lid portion beyond the limited opening movement caused by the linkage mechanism for increased access to the underwater enclosure.
Abstract:
A manually powered swimming pool cover drive for extending and retracting swimming pool covers and which includes a pair of overrunning one way clutch devices for intermittent coupled rotation with and also freewheeling about a drive shaft. A drum rotates with the drive shaft and allows winding of a cover about the drum when retracted from a covered position over a swimming pool. A pair of one way clutches may be trained around a drive shaft and coupled for rotating a cable reel allowing for the winding of cables used to extend a swimming pool cover. The respective pairs of overrunning, one-way clutches are reciprocated back and forth respectively in a type of indexing operation, manually and with long lever handles for rotating the drive shafts.
Abstract:
A track assembly for allowing movement of a flexible enclosure cover over an area to be enclosed as, for example, a body of water in a swimming pool. The assembly comprises a pair of spaced apart tracks mounted on opposite sides of the area to be enclosed with each being comprised of an elongate strip. Each track strip comprises a cable receiving channel with a gutter or debris trough located generally beneath the channel for collection of debris. Preferably, a slider can be located in the cable receiving channel for locking to the cable and for securement of the cover to the cable. The track can be constructed to also allow for lubrication of the cable receiving channel enabling a slider mechanism to freely move therein. When a slider is used, it extends into each channel at approximately a 45.degree. angle with respect to a vertical direction. In accordance with this construction, debris which might otherwise collect in the cable receiving channel will drop into the gutter and will not interfere with movement of the slider mechanism or the leading edge of the cover. The slider may be adjustably secured to a rigid body which is, in turn, secured to the leading edge of the cover, and which allows side-to-side adjustment of the leading edge. Adjustment in the 45.degree. angulated plane could reduce bending moment forces on the slider and track.
Abstract:
A manually powered swimming pool cover drive for extending and retracting swimming pool covers is described which includes a pair of overrunning, one-way clutch devices journaled around a drive shaft coupled for rotating a swimming pool cover drum for retracting a swimming pool cover and a pair of one-way clutch devices journaled around a drive shaft coupled for rotating a cable reel for extending a swimming pool cover. The respective pairs of overrunning, one-way clutch devices are reciprocated back and forth respectively, manually with long lever handles for rotating the respective drive shafts.
Abstract:
An anti-cavitation hydraulic manifold for hydraulically coupling the hydraulic input and output of two, drive coupled, reversible hydraulic motors to a reversible source of hydraulic power is described which includes: (i) two high pressure hydraulic input/output (I/O) chambers receiving hydraulic input from a reversible hydraulic power source, each hydraulically coupled to a separate input/output (I/O) line of one reversible hydraulic motor; (ii) a common translation passage hydraulically communicating with each high pressure input/output (I/O) chamber and hydraulically establishing a common input/output (I/O) or bypass line for the respective reversible hydraulic motors; (iii) a shuttle ball within each high pressure input/output (I/O) chamber seatable upon a valve seat terminating the end of the translation passage for isolating the common translation passage and bypass line and directing high pressure hydraulic input from the reversible hydraulic power source to the separate input/output (I/O) line for `driving` the particular reversible hydraulic motor; (iv) a shuttle rod translating in the translation passage having a length greater than that of the translation passage for functionally preventing the respective shuttle balls in the high pressure input/output (I/O) chambers from simultaneously seating upon respective valve seats terminating each end of the translation passage thus hydraulically coupling the hydraulic output of the `driven` reversible motor to its input, i.e., to the common bypass line coupling the respective reversible motors.
Abstract:
A leading edge and track slider system for automatic swimming pool covers which carries the front edge of the swimming pool cover as it is drawn across to cover or uncover a swimming pool includes a rigid structural boom having a flat or planer longitudinal surface with "C" channel along one edge of the flat surface receiving and capturing a front beaded edge of the pool cover. Connecting plates, secured to the flat surface of the boom, pivotally couple the ends of the boom to a pair slider elements each having a hollow cylindrical sliding edge captured and sliding within a "C" channel of conventional swimming pool cover track secured on either side of the pool. The pivotal coupling between the connecting plate and slider element is achieved by a bolt translating in a slot cut through the slider element oriented perpendicularly relative to the direction of cover travel as it is drawn across the pool. The cables or ropes extending from the beaded side edges of the pool cover each thread a hollow cylindrical sliding edge of a slider element and connect to a take-up reel of the drive mechanism. Each slider element is anchored to the cable or rope threading its hollow cylindrical sliding edge by a plurality screws with a smooth shank having a diameter less than the thickness of a necked section joining to the hollow cylindrical sliding edge and a length extending beyond the necked section into the main body of the slider element.
Abstract:
A drive and control system for controlling the movement of a pool cover comprised of interconnected rigid buoyant slats. The system relies upon a hydraulic drive section including a hydraulic motor drive which may be initially provided with fluid under pressure by a remote electric drive section. The hydraulic drive section is also provided with an effective means of controlling movement of the pool cover, both in a winding direction on a cover drum, which may be submerged, and/or in an unwinding direction where the pool cover is being unwound from the drum. Various mechanisms to control the movement of the cover are described herein.
Abstract:
A hydraulic drive system is described for automatic swimming pool cover systems in which a hydraulic drive provides torque for both resisting cover drum rotation during cover extension across the pool and rotating the cover drum for cover retraction, while a separate second hydraulic drive provides torque for both rotating the cable reels for cover extension and resisting cable reel rotation during cover retraction.
Abstract:
Two-piece detachable bracket for supporting heavy pool-deck lid modules covering below deck troughs housing powered pool cover systems is described.
Abstract:
The present invention relates to a system for sequentially supporting, opening and closing a pool-deck lid covering below-deck troughs housing coordinated with the operation of powered pool cover systems housed in the troughs. In certain embodiments the system comprises in combination: a front, longitudinal seating structure, an upwardly movably, cantilever bracket structure, hydraulic/pneumatic means, and a hydraulic/pneumatic actuation control means.