Abstract:
A method of manufacturing a hydrogen-absorption alloy electrode which comprises particles of a hydrogen-absorption alloy that comprises a rare earth element, Ni, Co and Al. The method comprises subjecting the hydrogen-absorption alloy particles to an alkaline treatment in a 10 to 50 weight % NaOH solution at 60 to 140 ° C. for 0.5 to 5 hours such that on the surface of the particles (amount of Al on surface/amount of Al in alloy)
Abstract:
Addition of Mo to a Zr--Mn--V--Cr--Co--Ni, a Zr--Mn--Cr--Co--Ni hydrogen storage alloy, or those including Ti as substitution for Zr improves high-rate discharge characteristics of the hydrogen storage alloy at low temperatures. The hydrogen storage alloy is of the general formula ZrMn.sub.a V.sub.b Mo.sub.c Cr.sub.d Co.sub.e Ni.sub.f, wherein 0.4.ltoreq.a.ltoreq.0.8, 0.ltoreq.b
Abstract:
The present invention provides a hydrogen storing alloy electrode having a large discharging capacity and a long lifetime at a high temperature. The electrode is also excellent in discharging characteristics in the early charging and discharging cycles. In one aspect of the present invention, the hydrogen storing alloy electrode is made of a hydrogen storing alloy represented by the general formula ZrMn.sub.m V.sub.x X.sub.y Ni.sub.z or a hydride thereof, wherein X is Al, Zn or W; m, x, y, and z are respectively mole ratio of Mn, V, X, and Ni to Zr: 0.4.ltoreq.m.ltoreq.0.8, 0.1.ltoreq.x.ltoreq.0.3, 1.0.ltoreq.z.ltoreq.1.5, and 2.0.ltoreq.m+x+y+z.ltoreq.2.4; when X is Al or Zn, 0
Abstract translation:本发明提供一种放电容量大,寿命长的储氢合金电极。 该电极在早期充放电循环中的放电特性也优异。 在本发明的一个方面中,储氢合金电极由通式为ZrMnmVxXyNiz或其氢化物表示的储氢合金制成,其中X为Al,Zn或W; m,x,y和z分别是Mn,V,X和Ni与Zr的摩尔比:0.4≤0.08,0.1≤x≤0.3,0.0≤z /=1.5和2.0 = m + x + y + z <= 2.4; 当X是Al或Zn时,0
Abstract:
A hydrogen storage alloy preferably used for electrodes in alkaline rechargeable battery is of the general formula: Zr.sub.1.2-a Ti.sub.a Mn.sub.v Al.sub.w Ni.sub.x M.sub.y Cr.sub.z wherein M represents at least one element selected from the group consisting of Si, Zn, Sn, Fe, Mo, Cu and Co; and wherein 0.1.ltoreq.a
Abstract translation:优选用于碱性可再充电电池中的电极的储氢合金具有以下通式:Zr1.2-aTiaMnvAlwNixMyCrz其中M表示选自Si,Zn,Sn,Fe,Mo,Cu和Co中的至少一种元素; 并且其中0.1≤n≤1.2,0.4≤v≤1.2,0≤w≤0.3,0.8≤x≤1.0,0≤y≤0.2,0.0≤x≤0.2,0≤x≤0.6,0.0≤y≤0.0,0.0,0.0,0.0=0.0 /=z=0.3和1.7 =(v + w + x + y + z)= 2.7。 该合金具有与MgZn2类似的晶体结构的C14型Laves相和与作为主合金相的MgCu 2类似的晶体结构的C15型Laves相中的至少一种。
Abstract:
A method of manufacturing a hydrogen-absorption alloy electrode which comprises particles of a hydrogen-absorption alloy that comprises a rare earth element, Ni, Co and Al. The method comprises subjecting the hydrogen-absorption alloy particles to an alkaline treatment in a 10 to 50 weight % NaOH solution at 60 to 140° C. for 0.5 to 5 hours such that on the surface of the particles (amount of Al on surface/amount of Al in alloy)
Abstract:
In a nickel-metal hydride rechargeable battery comprising a positive electrode of nickel hydroxide and a negative electrode of hydrogen-absorption alloy, prolonged battery life is achieved by limiting the charge and discharge operations to be performed in the range of 20-60% of the hydrogen-absorption capacity of the hydrogen-absorption alloy.
Abstract:
The present invention provides methods for detecting a working condition of a non-aqueous electrolyte secondary battery which allow easy and accurate determination of the degree of degradation and remaining capacity of the non-aqueous electrolyte secondary battery by a simple test irrespective of the past charging and discharging history of the battery. In the methods of the present invention, the degree of degradation of battery is quantitatively determined on the basis of the voltage value in charging or discharging at a constant current, or from an equation with that voltage value as variable.
Abstract:
A hydrogen storage alloy preferably used for electrodes in an alkaline storage battery is provided. The alloy is of the general formula ZrMn.sub.w V.sub.x M.sub.y Ni.sub.z which comprises C15-type Laves phases having a crystal structure similar to that of MgCu.sub.2 as a main alloy phase, where M is an element selected from the group consisting of Fe and Co; w, x, y, and z are respectively the mole ratios of Mn, V, M and Ni to Zr; the conditions 0.4.ltoreq.w.ltoreq.0.8, 0.1.ltoreq.x.ltoreq.0.3, 0.ltoreq.y.ltoreq.0.2, 1.0.ltoreq.z.ltoreq.1.5 and 2.0.ltoreq.w+x+y+z.ltoreq.2.4 are satisfied.
Abstract:
The invention relates to a new method of manufacturing a sealed rechargeable alkaline battery including metal oxides as positive electrode active materials and a hydrogen absorbing alloy as a negative electrode material. The basic principle of the method is that, instead of the conventional electrochemical formation, the property of a hydrogen absorbing alloy is utilized to cause the negative electrode to absorb hydrogen to thereby achieve precharged portions within the negative electrode having a relatively larger capacity as compared with the positive electrode. Regardless of the kind of positive electrode, the method of the invention insures a broad freedom in the capacity appropriation between the positive and negative electrodes.
Abstract:
The present invention provides a hydrogen storage alloy electrode made of a pentanary or higher multi-component hydrogen storage alloy or a hydride thereof where the alloy comprises at least Zr, Mn, Cr, Ni, and M where M is one or more elements selected from V an Mo, and a major component of the alloy phase is C.sub.15 (MgCu.sub.2) type Laves phase. This hydrogen storage alloy electrode may be enhanced in its performance by subjecting the alloy after the production thereof to a homogenizing heat-treatment at a temperature of 900.degree. to 1300.degree. C. in vacuum or in an inert gaseous atmosphere.