Abstract:
A fixing device includes an endless belt rotatable in a predetermined direction of rotation and a nip formation assembly disposed opposite an inner circumferential surface of the endless belt. An opposed rotary body is pressed against the nip formation assembly via the endless belt to form a fixing nip between the endless belt and the opposed rotary body through which a recording medium bearing a toner image is conveyed. A belt holder contacts and supports each lateral end of the endless belt in an axial direction thereof. The belt holder is isolated from the opposed rotary body with a first interval interposed therebetween in the axial direction of the endless belt.
Abstract:
A fixing device for fixing an image on a recording medium includes an endless fixing rotary member which is formed into a loop and comes into contact with the image on the recording medium, an opposed rotary member which is in contact with the fixing rotary member, a nip forming member provided inside the loop of the fixing rotary member to be in contact with the opposed rotary member via the fixing rotary member to form a nip portion to which the recording medium is fed in a feeding direction, a support member which supports the nip forming member, and a heating source which heats the fixing rotary member. The nip forming member includes a downstream portion extending downstream in the feeding direction from a center of the nip portion and an upstream portion extending upstream in the feeding direction from the center and longer than the downstream portion.
Abstract:
A fixing device for fixing an image on a recording medium includes an endless fixing rotary member which is formed into a loop and comes into contact with the image on the recording medium, an opposed rotary member which is in contact with the fixing rotary member, a nip forming member provided inside the loop of the fixing rotary member to be in contact with the opposed rotary member via the fixing rotary member to form a nip portion to which the recording medium is fed in a feeding direction, a support member which supports the nip forming member, and a heating source which heats the fixing rotary member. The nip forming member includes a downstream portion extending downstream in the feeding direction from a center of the nip portion and an upstream portion extending upstream in the feeding direction from the center and longer than the downstream portion.
Abstract:
A fixing device includes a fixing rotator unit. The fixing rotator unit includes a fixing rotator formed into a loop; a holder to hold an end in a longitudinal direction of the fixing rotator; a pressure rotator disposed opposite the fixing rotator to press against the fixing rotator; a pressure pad disposed inside the loop to receive pressure from the pressure rotator via the fixing rotator to form an area of contact between the fixing rotator and the pressure rotator; a stay to support the pressure pad against the pressure from the pressure rotator; and a positioner to secure the holder and to position the stay with one end of the stay projecting outwards from the positioner. The positioner has a limited moving distance in a thrust direction. The limited moving distance is shorter than a length of a part of the holder entering the loop.
Abstract:
A fixing device includes a fixing rotator, a first heat generator and a second heat generator that heat the fixing rotator, and a support disposed inside the fixing rotator. A reflector, interposed between the support and each of the first heat generator and the second heat generator, reflects light radiated from the first heat generator and the second heat generator toward the fixing rotator. The reflector includes a body mounted on the support and a shield portion projecting from the body toward the first heat generator and the second heat generator to shield the fixing rotator from the first heat generator and the second heat generator. An electric circuit is connected to the first heat generator and the second heat generator. A heat generation restrainer is provided in the electric circuit to restrict heat generation in the electric circuit.
Abstract:
According to an embodiment, provided is a fixing device that includes: a rotatable fixing member that heats a recording medium on a side carrying an unfixed image; a rotatable pressing member that is pressed and is contacted with the fixing member to form a nip portion between the pressing member and the fixing member; a heat source heating the fixing member; a relay switch provided in an energizing path for the heat source; a temperature detection sensor detecting a temperature of the fixing member; and a control unit that controls energization of the heat source according to the temperature detected by the temperature detection sensor. The control unit keeps the relay switch in an off state if the temperature of the fixing member is equal to or more than a predetermined temperature when the fixing member has stopped rotation.
Abstract:
A fixing device includes a heat source; a fixing member looped into a generally cylindrical shape to rotate in a circumferential direction thereof and partially heated by the heat source and to heat a surface of a recording medium bearing an unfixed toner image to fix the unfixed toner image thereon in a fixing process; a rotary pressing member disposed facing the fixing member to form a nip therebetween, through which the recording medium is transported in a transport direction; and a rotation driver to rotate one of the fixing member and the pressing member. In a case in which the fixing member is halted for a reason other than the fixing process while power of the fixing device is on, electric power is not supplied to the heat source and the fixing member is rotated by a predetermined amount or more after the fixing member is halted.
Abstract:
An image forming apparatus includes a fixing member, a heat source, a nip forming member, a pressing member, a recording medium conveyor, a first temperature detector to detect a temperature of a non-sheet-passing area of the fixing member through which a recording medium does not pass, a second temperature detector to detect a temperature of the recording medium, and a controller to adjust a time to drive the recording medium conveyer to control a time interval between successive recording media and a changing time to change the time interval, according to a temperature detected by the second temperature detector in response to a temperature rise in the non-sheet-passing area of the fixing member detected by the first temperature detector.
Abstract:
A fixing device includes a rotatable, endless first belt and a rotatable, endless second belt contacting an outer circumferential surface of the first belt. A first nip formation pad contacts an inner circumferential surface of the first belt to form a fixing nip between the first belt and the second belt, through which a recording medium bearing a toner image is conveyed. A rotatable driver contacts an inner circumferential surface of the second belt to press against the first nip formation pad via the first belt and the second belt to frictionally drive and rotate the first belt and the second belt.
Abstract:
A fixing device includes a fixing rotator rotatable in a predetermined direction of rotation and a nip formation assembly contacting an inner circumferential surface of the fixing rotator. An opposed rotator presses against the nip formation assembly via the fixing rotator to form a fixing nip between the fixing rotator and the opposed rotator, through which a recording medium is conveyed. A support, disposed opposite the inner circumferential surface of the fixing rotator, supports the nip formation assembly. A heater, disposed opposite the inner circumferential surface of the fixing rotator, heats the fixing rotator. A reflector, disposed opposite an outer circumferential surface of the fixing rotator, reflects heat radiated from the fixing rotator onto the fixing rotator. The reflector spans a circumferential span of the fixing rotator where the fixing rotator is spaced apart from the support with a decreased interval therebetween.