摘要:
A device for high gradient magnetic separation contains, between two pole pieces, an ordered filter structure with parts of magnetic material, which are arranged perpendicular to the direction of a magnetic field and the flow direction of a medium to be filtered, the filter structure comprising flat ribbons with a thickness of less than 100 .mu.m of a material with a coercitive field strength H.sub.c less than 0.2 Oe, which are arranged so that their axes and the normals of their flat sides are approximately perpendicular to the direction of the magnetic field, requiring only a very small field strength for magnetizing the filter structure in order to obtain high flux density gradients.
摘要:
The disclosure is directed to a magnetically anisotropic recording medium (2) containing a disc-shaped substrate (3) of nonmagnetic material, on the flat side (4) of which is applied a thin lower layer (8) of Si, Ge or Ti, and thereon a Co-containing alloy with vertical magnetic anisotropy. This recording medium is to assure a large signal level without the need for a special magnetically soft substrate. For this purpose, a sandwich-like multilayer structure (7) is provided according to the invention, in which at least three storage layers (10 to 13) of the Co-containing alloy with a respective thickness (d.sub.s) of at most 100 nm are separated by comparatively thinner intermediate layers (15 to 17) of the Si, Ge and/or Ti. The recording medium is advantageously provided for discs of data memories with perpendicular (vertical) magnetization.
摘要:
Magnetic separator for the purification of liquids with a tube which conducts the latter, contains balls or wire screens as magnetizable bodies and is surrounded by a coil for magnetizing the bodies. The tube contains, in the flow direction of the liquids over the major part of its length, balls and subsequently wire screens. A common coil is associated with the balls and the wire screens for magnetizing. The balls and the wire screens are connected to a common flushing line.
摘要:
To test a conductor with superconductive material which is in the superconducting state, the conductor is led through an external magnetic field which comprises at least two magnetic field regions spatially separated from each other and arranged one behind the other in the lengthwise direction of the conductor, the fields of which are angularly displaced from each other in the circumferential direction relative to the longitudinal axis of the conductor permitting disturbances in all superconductivity regions in superconductors of any cross section to be ascertained with certainty.