Abstract:
The fuel processor (10) comprises a desulphurization reactor (12), a catalytic partial oxidation reactor (14), a combustor (16) and a pre-reformer (18), means (20) to supply a hydrocarbon fuel to the desulphurization reactor (12), means (24) to supply air to the catalytic partial oxidation reactor (14) and means (24) to supply air to the combustor (16). The desulphurization reactor (12) is arranged to supply desulphurised hydrocarbon fuel to the catalytic partial oxidation reactor (14) in first, second and third modes of operation, to the combustor (16) in a first mode of operation to the pre-reformer (18) in a third mode of operation. The combustor (16) is arranged to supply oxygen depleted air and steam to the pre-reformer (18) in the first mode of operation. The catalytic partial oxidation reactor (14) is arranged to supply hydrogen to the desulphurization reactor (12) in all three modes of operation. The catalytic partial oxidation reactor (14) is arranged to supply the pre-reformer (18) in all three modes of operation and the pre-reformer (18) is arranged to supply product gases to the fuel cell arrangement.
Abstract:
A pre-reformer comprises a non-electrically conducting gas tight duct and an electrically conducting wire arranged in the duct. The electrically conducting wire is electrically isolated from the duct. The duct has an inlet for receiving a hydrocarbon fuel at a first end and an outlet for supplying a pre-reformed hydrocarbon fuel at a second end. At least the inner surface of the duct is chemically inert with respect to the hydrocarbon fuel. An electrical power supply is electrically connected to the electrically conducting wire and a control means controls the supply of electrical current through the electrically conducting wire to provide thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
Abstract:
A pre-reformer (10) comprises a non-electrically conducting gas tight duct (12) and an electrically conducting wire (14) arranged in the duct (12). The electrically conducting wire (14) is electrically isolated from the duct (12). The duct (12) has an inlet (16) for receiving a hydrocarbon fuel at a first end (18) and an outlet (20) for supplying a pre-reformed hydrocarbon fuel at a second end (22). At least the inner surface (24) of the duct (12) is chemically inert with respect to the hydrocarbon fuel. An electrical power supply (26) is electrically connected to the electrically conducting wire (14) and a control means (28) controls the supply of electrical current through the electrically conducting wire (14) to maintain the electrically conducting wire (14) at a temperature to provide selective thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
Abstract:
The fuel processor (10) comprises a desulphurisation reactor (12), a catalytic partial oxidation reactor (14), a combustor (16) and a pre-reformer (18), means (20) to supply a hydrocarbon fuel to the desulphurisation reactor (12), means (24) to supply air to the catalytic partial oxidation reactor (14) and means (24) to supply air to the combustor (16). A method of operating the fuel processor for a fuel cell arrangement includes (a) supplying safe gas to the fuel cell arrangement in a first mode of operation, (b) supplying synthesis gas to the fuel cell arrangement in a second mode of operation and (c) supplying processed hydrocarbon fuel to the fuel cell arrangement in a third mode of operation.
Abstract:
A pre-reformer (10) comprises a non-electrically conducting gas tight duct (12) and an electrically conducting wire (14) arranged in the duct (12). The electrically conducting wire (14) is electrically isolated from the duct (12). The duct (12) has an inlet (16) for receiving a hydrocarbon fuel at a first end (18) and an outlet (20) for supplying a pre-reformed hydrocarbon fuel at a second end (22). At least the inner surface (24) of the duct (12) is chemically inert with respect to the hydrocarbon fuel. An electrical power supply (26) is electrically connected to the electrically conducting wire (14) and a control means (28) controls the supply of electrical current through the electrically conducting wire (14) to maintain the electrically conducting wire (14) at a temperature to provide selective thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
Abstract:
A pre-reformer (10) comprises a non-electrically conducting gas tight duct (12) and an electrically conducting wire (14) arranged in the duct (12). The electrically conducting wire (14) is electrically isolated from the duct (12). The duct (12) has an inlet (16) for receiving a hydrocarbon fuel at a first end (18) and an outlet (20) for supplying a pre-reformed hydrocarbon fuel at a second end (22). At least the inner surface (24) of the duct (12) is chemically inert with respect to the hydrocarbon fuel. An electrical power supply (26) is electrically connected to the electrically conducting wire (14) and a control means (28) controls the supply of electrical current through the electrically conducting wire (14) to maintain the electrically conducting wire (14) at a temperature to provide selective thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
Abstract:
The fuel processor (10) comprises a desulphurisation reactor (12), a catalytic partial oxidation reactor (14), a combustor (16) and a pre-reformer (18), means (20) to supply a hydrocarbon fuel to the desulphurisation reactor (12), means (24) to supply air to the catalytic partial oxidation reactor (14) and means (24) to supply air to the combustor (16). A method of operating the fuel processor for a fuel cell arrangement includes (a) supplying safe gas to the fuel cell arrangement in a first mode of operation, (b) supplying synthesis gas to the fuel cell arrangement in a second mode of operation and (c) supplying processed hydrocarbon fuel to the fuel cell arrangement in a third mode of operation.
Abstract:
A pre-reformer (10) comprises a non-electrically conducting gas tight duct (12) and an electrically conducting wire (14) arranged in the duct (12). The electrically conducting wire (14) is electrically isolated from the duct (12). The duct (12) has an inlet (16) for receiving a hydrocarbon fuel at a first end (18) and an outlet (20) for supplying a pre-reformed hydrocarbon fuel at a second end (22). At least the inner surface (24) of the duct (12) is chemically inert with respect to the hydrocarbon fuel. An electrical power supply (26) is electrically connected to the electrically conducting wire (14) and a control means (28) controls the supply of electrical current through the electrically conducting wire (14) to maintain the electrically conducting wire (14) at a temperature to provide selective thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.