Abstract:
A method and apparatus for desalinating water combined with power generation, wherein a desalination system is used for desalinating aquifer brine water and is operationally related to a power generation system, wherein such dual-purpose co-generation facility captures the natural gas entrained within the aquifer brine water.
Abstract:
Compositions and methods for oil recovery using a surfactant-less alkaline-polymer system in hard water or hard brine is described in the instant invention. The formulation further includes a chelating agent, an alkaline agent (which can be the same as the chelating agent), and a co-solvent. The formulations as disclosed herein are capable of forming a surfactant in-situ resulting in Winsor Type III micro-emulsions of low interfacial tension.
Abstract:
Provided herein are, inter alia, heavy crude oil emulsion compositions and methods of making the same. The compositions and methods provided herein are particularly useful for the transport of heavy crude oils.
Abstract:
The present invention describes the synthesis and use of cleavable di-functional anionic surfactants for enhanced oil recovery applications and/or the use of sacrificial surfactants.
Abstract:
The present invention includes a method for treating a hydrocarbon-bearing clastic formation having brine. The method includes contacting the hydrocarbon-bearing clastic formation with a fluid, which at least one of at least partially solubilizes or at least partially displaces the brine in the hydrocarbon-bearing clastic formation, and subsequently contacting the hydrocarbon-bearing clastic formation with a composition. The composition includes a nonionic fluorinated polymeric surfactant and solvent. When the composition is contacting the hydrocarbon-bearing clastic formation, the nonionic fluorinated polymeric surfactant has a cloud point that is above the temperature of the hydrocarbon-bearing clastic formation.
Abstract:
Methods for treating clastic formations bearing brine and at least one of black oil or volatile oil using a composition containing a nonionic polymer and solvent. The solvent at least one of solubilizes or displaces at least one of brine or oil in the clastic formation. Methods for treating a formation having at least one fracture using a composition containing a nonionic polymer and solvent. Methods for making a composition for treating a clastic formation bearing brine and at least one of black oil or volatile oil.
Abstract:
Provided herein are inter alia novel compositions and methods having application in a variety of fields including the field of enhanced oil recovery, the cleaning industry as well as groundwater remediation. In particular, the alkoxy carboxylate compounds and mixtures thereof presented herein can be used, inter alia, for the recovery of a large range of crude oil compositions from challenging reservoirs.
Abstract:
Compositions and methods for oil recovery using a surfactant-less alkaline-polymer system in hard water or hard brine is described in the instant invention. The formulation further includes a chelating agent, an alkaline agent (which can be the same as the chelating agent), and a co-solvent. The formulations as disclosed herein are capable of forming a surfactant in-situ resulting in Winsor Type III micro-emulsions of low interfacial tension.
Abstract:
The present invention describes the use of EDTA and/or alkali treated hard brine at high pH for making ASP formulations for EOR applications.
Abstract:
The present invention describes the synthesis and use of cleavable di-functional anionic surfactants for enhanced oil recovery applications and/or the use of sacrificial surfactants.