Abstract:
The present disclosure provides metallic LEP inks and associated methods. In one example, a method of manufacturing a metallic LEP ink having reduced impurities can comprising adding a metallic pigment slurry and a resin to a stainless steel attritor, adding ceramic grinding beads to the attritor, and grinding the metallic pigment and the resin to form the metallic LEP ink.
Abstract:
LEP ink includes a carrier and particles dispersed in the carrier. Particles contain polymeric resin and dendritic macromolecule having functional groups. Some dendritic macromolecule functional groups are coupled to some resin functional groups. Other dendritic macromolecule functional groups are not coupled to any component of the resin. Other resin functional groups are not coupled to any component of the dendritic macromolecule. Liquid toner producing methods include forming a paste containing a carrier liquid and a thermoplastic resin having a polymeric backbone and functional groups. The paste is combined with a colorant and an adhesion promoting dendritic macromolecule having functional groups. After combining the paste and dendritic macromolecule, the method includes coupling the dendritic macromolecule functional groups with resin functional groups, encapsulating the colorant in the resin/dendritic macromolecule, and dispersing the encapsulated colorant in the carrier liquid. The dendritic macromolecule increases durability in printed images using the ink or toner.
Abstract:
LEP ink includes a carrier and particles dispersed in the carrier. Particles contain polymeric resin and dendritic macromolecule having functional groups. Some dendritic macromolecule functional groups are coupled to some resin functional groups. Other dendritic macromolecule functional groups are not coupled to any component of the resin. Other resin functional groups are not coupled to any component of the dendritic macromolecule. Liquid toner producing methods include forming a paste containing a carrier liquid and a thermoplastic resin having a polymeric backbone and functional groups. The paste is combined with a colorant and an adhesion promoting dendritic macromolecule having functional groups. After combining the paste and dendritic macromolecule, the method includes coupling the dendritic macromolecule functional groups with resin functional groups, encapsulating the colorant in the resin/dendritic macromolecule, and dispersing the encapsulated colorant in the carrier liquid. The dendritic macromolecule increases durability in printed images using the ink or toner.
Abstract:
A covert label. A substrate comprises a field of ink. Disposed within the field of ink, is ink that can be preferentially removed according to a preconfigured pattern. The preconfigured pattern comprises information associable with at least one object.
Abstract:
An ink contains dispersed particles, individually including at least one thermoplastic first resin exhibiting a MFI less than or equal to 100, at least one thermoplastic second resin exhibiting a MFI greater than 100, and a white pigment. A liquid toner producing method includes forming a paste containing the resins, combining the paste with a white pigment, and after combining the paste and pigment, applying a shear force, encapsulating the pigment, and dispersing the encapsulated pigment. A digital printing method includes providing a liquid marking agent containing charged particles dispersed in a carrier liquid, individual particles including at least one thermoplastic first resin and at least one thermoplastic second resin encapsulating a white pigment, and printing a hard image on a substrate. At least a portion of the image has a white color.
Abstract:
An ink contains dispersed particles, individually including at least one thermoplastic first resin exhibiting a MFI less than or equal to 100, at least one thermoplastic second resin exhibiting a MFI greater than 100, and a white pigment. A liquid toner producing method includes forming a paste containing the resins, combining the paste with a white pigment, and after corn-biasing the paste and pigment, applying a shear force, encapsulating the pigment, and dispersing the encapsulated pigment. A digital printing method includes providing a liquid marking agent containing charged particles dispersed in a carrier liquid, individual particles including at least one thermoplastic first resin and at least one thermoplastic second resin encapsulating a white pigment, and printing a hard image on a substrate. At least a portion of the image has a white color.
Abstract:
A set of colorants for printing a multi-colored image when viewed under non-visible radiation outside of the visible spectrum can include a first colorant and a second colorant. The first colorant can be capable of absorbing non-visible radiation and shifting the wavelength of the non-visible radiation to a visible wavelength, thus producing a visible color. Likewise, the second colorant can be capable of absorbing the non-visible radiation and shifting the wavelength to a second visible wavelength, thus producing a different visible color.
Abstract:
A black toner particle for use in a printing toner, the particle comprising: a polymer: carbon black; and a plurality of different colored pigments; wherein the carbon black and pigments are dispersed in the polymer.
Abstract:
A set of colorants for printing a multi-colored image when viewed under non-visible radiation outside of the visible spectrum can include a first colorant and a second colorant. The first colorant can be capable of absorbing non-visible radiation and shifting the wavelength of the non-visible radiation to a visible wavelength, thus producing a visible color. Likewise, the second colorant can be capable of absorbing the non-visible radiation and shifting the wavelength to a second visible wavelength, thus producing a different visible color.