Abstract:
A membrane-electrode assembly for use in a reversible fuel cell comprises an ion conductive membrane having first and second surfaces; a first electrocatalyst layer in contact with the first surface of the membrane, such first electrocatalyst layer comprising at least one discrete electrolysis-active area (ELE1i) and at least one discrete energy generation-active area (EG1i). A second electrocatalyst layer is placed in contact with the second surface of the membrane, such second electrocatalyst layer comprising at least one discrete electrolysis-active area (ELE2i) and at least one discrete energy generation-active area (EG2i). Each of the discrete electrolysis-active area(s) (ELE1i) on the first electrocatalyst layer correspond and are aligned with each of the discrete electrolysis-active area(s) (ELE2i) on the second electrocatalyst layer, and each of the discrete energy generation-active area(s) (EG1i) on the first electrocatalyst layer correspond and are aligned with each of the discrete energy generation-active area(s) (EG2i) on the second electrocatalyst layer.
Abstract:
A membrane-electrode assembly for use in a reversible fuel cell comprises an ion conductive membrane having first and second surfaces; a first electrocatalyst layer in contact with the first surface of the membrane, such first electrocatalyst layer comprising at least one discrete electrolysis-active area (ELE1i) and at least one discrete energy generation-active area (EG1i). A second electrocatalyst layer is placed in contact with the second surface of the membrane, such second electrocatalyst layer comprising at least one discrete electrolysis-active area (ELE2i) and at least one discrete energy generation-active area (EG2i). Each of the discrete electrolysis-active area(s) (ELE1i) on the first electrocatalyst layer correspond and are aligned with each of the discrete electrolysis-active area(s) (ELE2i) on the second electrocatalyst layer, and each of the discrete energy generation-active area(s) (EG1i) on the first electrocatalyst layer correspond and are aligned with each of the discrete energy generation-active area(s) (EG2i) on the second electrocatalyst layer.
Abstract:
The present invention concerns an obstacle detection procedure within the area surrounding a motor vehicle.It features the fact that the procedure involves the following stages: Carrying out a first obstacle detection by image processing resulting in a definition of at least one region of interest; Classifying the detected obstacle with an index of confidence applied to the region of interest in relation to given characteristics; Carrying out a second obstacle detection by sensor/s with detection range below a first threshold resulting in a determined position; Projecting the determined position into a reference marker; Projecting the region of interest into this reference marker; Aligning the two projections obtained and attributing a determined position to the obstacle classified in accordance with the alignment.
Abstract:
The invention relates to an access-protection device for an electronic card, including a flexible circuit (2) that comprises an electrically conductive track (21) in the shape of a mesh connected to processing means of the electronic card, a guide (3) around which the flexible circuit (2) is arranged and for maintaining the flexible circuit (2) in position, and a protection hood (4) provided about the assembly comprising the guide (3) and the flexible circuit (2), wherein said access-protection device can be configured to be installed in an area of the card to be protected.
Abstract:
The invention relates to a nitrogenous composition resulting from the enzymatic hydrolysis of an aqueous solution of maize gluten, having a ratio of the concentrations or inorganic phosphorus to total phosphorus (Pi/Pt) greater than or equal to 0.05, preferably from 0.05 to 0.5 and a ratio of the concentrations of amine nitrogen to total nitrogen (Na/Nt) greater than or equal to 0.025. The invention also relates to the use of a nitrogenous composition according to the invention in culture media for microorganisms which produce, in particular, organic acid.
Abstract:
The invention relates to a nitrogenous composition resulting from the enzymatic hydrolysis of an aqueous solution of maize gluten, having a ratio of the concentrations of inorganic phosphorus to total phosphorus (Pi/Pt) greater than or equal to 0.05, preferably from 0.05 to 0.5 and a ratio of the concentrations of amine nitrogen to total nitrogen (Na/Nt) greater than or equal to 0.025. The invention also relates to the use of a nitrogenous composition according to the invention in culture media for microorganisms which produce, in particular, organic acid.
Abstract:
The invention relates to a process for the preparation of high purity lactic acid from an aqueous solution containing said acid in the form of salt(s), characterised in that the aqueous solution is treated with a strong acid in order to liberate lactic acid in the free form and to produce salts of the corresponding strong acid, said salts of the strong acid are crystallised by evaporative crystallisation and lactic acid is recovered in the free form in solution.
Abstract:
Process for marking a thermoplastic article produced by extrusion of a parison and blow moulding of the said parison, in which the extruded parison is marked before blow moulding by at least one jet of an ink based on a compound which crystallizes in acicular form during drying. No figure.
Abstract:
An electronic system including an electronic circuit, an actuation device, a spacer and a protection device. The electronic circuit has a surface on which at least two first conductive tracks are arranged. The actuation device includes at least one first bearing element. The spacer is interposed between the electronic circuit and the actuation device and includes at least one opening at least partially receiving the bearing element. The protection device is interposed between the electronic circuit and the spacer and includes at least one second conductive track having ends respectively connected to first conductive portions of first deformable regions of the protection device. Each first portion is capable of contacting one of the first conductive tracks of the electronic circuit to electrically supply the second track under the effect of a deformation of first regions.
Abstract:
A device for strengthening a card reader including a slot at least partly delimited by a base and two lateral walls and extending along a longitudinal direction, the slot being intended to receive a card moving along the longitudinal direction while bearing on the base, the device including a wire of substantially circular cross-section arranged at the level of the base and on which the card is intended to slide.