Abstract:
A perpetual bioinformatics and virtual colorimeter expert system platform is disclosed to remotely measure dermal and epidermal properties with precision and to enhance decision-making. Some embodiments of the system provide for virtual tristimulus colorimetry, wherein a capture device captures one or more dermal images of one or more skin area of a user. A color grid includes one or more permutations of a plurality of recorded predetermined colors. A scale of the color grid is recorded as being printed or projected at a predetermined size. Application of the virtual tristimulus colorimeter to one of the images is performed. As a result of this application the image is calibrated according to the virtual tristimulus colorimeter. In some embodiments the capture device may include a smartphone camera, interactive with the virtual tristimulus colorimeter smartphone application.
Abstract:
A system for motion control of a cone-beam tomography recording device includes a drive system configured to position a paired radiation source and radiation detector relative to an object. The system further includes a controller configured to: initiate a trigger plan operable as a function of a constant frequency control signal, activate the paired radiation source and radiation detector in accordance with the trigger plan, drive, in response to the trigger plan, the first drive system to a steady operating state derived as a function of the constant frequency, capture a plurality of broadcast radiation signals representative of a plurality of two dimensional images of the object such that the two dimensional images are defined equidistant positions defined by the trigger plan and as a function of the constant frequency signal, and generate a three dimensional representation of the object based on the plurality of two dimensional images.
Abstract:
This application concerns novel methods which enable or improve the ability of molecules, particularly large molecules, to cross the blood-brain barrier, the blood-eye barrier, and/or the blood-nerve barrier and therefore be of improved diagnostic and/or therapeutic use in humans and other mammals. These methods involve perispinal administration of imaging agents without direct intrathecal injection. Perispinal administration is defined as administration of the molecule into the anatomic area within 10 cm of the spine. Perispinal administration results in absorption of the imaging agent into the vertebral venous system. The vertebral venous system is capable of transporting molecules into the brain, the eye, the retina, the auditory apparatus, the cranial nerves, the head, the spine, the spinal cord, the vertebral bodies, the dorsal root ganglia, and the nerve roots via retrograde venous flow, thereby bypassing the blood-brain barrier and similar barriers and delivering the molecules to the brain, the eye, the retina, the auditory apparatus, the cranial nerves, the head, the spine (including the vertebral bodies), the spinal cord, the dorsal root ganglia, or the nerve roots. This method may be utilized for a wide variety of diagnostic agents, including, but not limited to biologics, monoclonal antibodies, fusion proteins, monoclonal antibody fragments, antibodies to tumor antigens, hormones, cytokines, anti-cytokines, interleukins, anti-interleukins, interferons, colony-stimulating factors, cancer chemotherapeutic agents, growth factors, anti-virals and antibiotics, including those which are radiolabeled, iodinated, or otherwise altered to facilitate diagnostic imaging. Included in these novel methods are perispinal delivery of amyloid imaging agents, and other ligands radiolabeled with [11C] or [18F] to faciliate PET imaging of the brain.
Abstract:
A message tracker having a transfer monitor, a set of registers, and at least one arithmetic unit increases performance and reliability when transmitting or receiving messages within a computer system. A set of message parameters such as a current address, a remaining length, and a communicated length are stored within the set of registers. The transfer monitor observes data transfers on a multi-tenant bus in order to detect data transfers related to the message and provide an update signal. The message parameters within the registers are updated in response to the update signal. The process of detecting and updating is repeated until the entire message is transferred, and the message tracker then informs a control processor or process that communication of the message has occurred. To facilitate message coalescing, several message trackers may share a message queue that is configured to store message parameters corresponding to completed messages.
Abstract:
Some embodiments include a particle source, an RF power source, an accelerator waveguide, and an imaging device. The particle source is to generate a first injector current and a second injector current, the first injector current being less than the second injector current. The RF power source is to generate first RF power at a first pulse rate and second RF power at a second pulse rate, the first pulse rate being greater than the second pulse rate. The accelerator waveguide is to accelerate a first electron beam based on the first injector current and the first RF power and to accelerate a second electron beam based on the second injector current and the second RF power, and the imaging device is to acquire an image based on the first electron beam. The second electron beam may be used to deliver treatment radiation to a patient.
Abstract:
A system, method, and process that determine and automatically correct registration errors between printed objects and mechanically produced objects using advanced image processing techniques is disclosed. Means are also presented for maintaining all registered functions to within very close tolerances during normal running, with other means for rapidly obtaining initial registration with substantial savings in material waste. The disclosed system and method/process are compatible with the printing and converting industry in which rolls of material are processed by printing a number of colors that require close registration especially in pictorial representation. These roll-fed printing machines are quite versatile and in addition to the printing of any number of colors on both front and back can perform any number of additional operations on the printed web at the same time. Some of these additional operations can be the punching of line holes, scoring, perforation and die cutting all of which impart a specific shape mechanically on the printed web. All of these functions must be initially registered to each other and maintained within close tolerances during normal running conditions. The presently disclosed registration system permits these initial registration procedures to be performed with high accuracy, speed, and across a wide variety of web materials and colors. The system generally applies to any web material (5701) on which register marks (5702) are applied, wherein images of the web are obtained (5703) and image processed (5704) under optional control of an operator interface display (5705), resulting in web press motor control (5706) to affect improved print registration on the web material (5701).
Abstract:
A system and method for radiation therapy delivery. Prior to the delivery of the actual treatment, a run up is executed in order to stabilize the RF system. The run up is accomplished by initiating the triggers with the injector and RF pulses out of phase so that the electrons, for example, in the accelerating waveguide do not get accelerated even though the RF system is being pulsed. The RF warm up period during which the injector and RF pulses are out of phase, ends at RAD ON (Radiation On) with the injector pulse being phase-shifted to coincide in time with the RF pulse thereby resulting in the production of electron beam pulses. Following the application of this run up period, precise and rapid disabling and enabling of the treatment beam between IMRT fields can be accomplished. The electron injection is phase-shifted in and out without affecting either the injector or the RF pulse amplitudes, thereby allowing transitions between a stable RAD ON beam and no beam between one pulse and the next.