Abstract:
Sentence boundaries in noisy conversational transcription data are automatically identified. Noise and transcription symbols are removed, and a training set is formed with sentence boundaries marked based on long silences or on manual markings in the transcribed data. Frequencies of head and tail n-grams that occur at the beginning and ending of sentences are determined from the training set. N-grams that occur a significant number of times in the middle of sentences in relation to their occurrences at the beginning or ending of sentences are filtered out. A boundary is marked before every head n-gram and after every tail n-gram occurring in the conversational data and remaining after filtering. Turns are identified. A boundary is marked after each turn, unless the turn ends with an impermissible tail word or is an incomplete turn. The marked boundaries in the conversational data identify sentence boundaries.
Abstract:
A chatbot system for an interactive platform. The chatbot system receives a prompt from a user and determines an intent of the user using the prompt. If the chatbot system can't determine an intent, the chatbot communicates the prompt as a personality prompt to a generative AI model. If the chatbot system can determine an intent from the prompt, the chatbot system generates an API call to an additional service using the intent. The chatbot system uses values returned by the additional service to generate a hint prompt that is communicated to the generative AI model. The chatbot system receives a response from the generative AI model to the personality prompt or hint prompt and communicates the response to the user.
Abstract:
Sentence boundaries in noisy conversational transcription data are automatically identified. Noise and transcription symbols are removed, and a training set is formed with sentence boundaries marked based on long silences or on manual markings in the transcribed data. Frequencies of head and tail n-grams that occur at the beginning and ending of sentences are determined from the training set. N-grams that occur a significant number of times in the middle of sentences in relation to their occurrences at the beginning or ending of sentences are filtered out. A boundary is marked before every head n-gram and after every tail n-gram occurring in the conversational data and remaining after filtering. Turns are identified. A boundary is marked after each turn, unless the turn ends with an impermissible tail word or is an incomplete turn. The marked boundaries in the conversational data identify sentence boundaries.