摘要:
An x-ray source (32) for performing energy discrimination within an imaging system (10) includes a cathode-emitting device (82) for emitting electrons and an anode (81) that has a target (80) whereupon the electrons impinge to generate an x-ray beam (93) with multiple x-ray quantity energy peaks (116 and 120). A method of performing energy discrimination in the imaging system (10) includes emitting the electrons. The x-ray beam (93) with the x-ray quantity energy peaks (116 and 120) is generated. The x-ray beam (93) is directed through an object (44) and is thereafter received. An x-ray image having multiple energy differentiable characteristics is generated in response to the x-ray beam (93) as received.
摘要:
Cast collimators for use in CT imaging systems are described, as are methods of making them. Such collimators may comprise pre-patient collimators, pre-patient filter/collimator assemblies, and/or post-patient collimators. The filters and/or collimators may be made of any suitable high-density, high atomic number material such as lead, a lead alloy, tantalum, tungsten, tungsten suspended in an epoxy matrix, tungsten suspended in a slurry, or the like. Embodiments of these collimators comprise specially-designed channels and vanes that allow them to be precision cast to the necessary degree of accuracy. These channels and vanes are preferably tapered. These collimators and filter/collimator assemblies help minimize the x-ray dose to the patient by minimizing the scattered radiation creation mechanism and by collimating out much of the scattered radiation that would otherwise be subjected to the patient. These collimators may be cast as either single piece structures, or multiple pieces that can be operatively connected together.
摘要:
A CT detector capable of energy discrimination and direct conversion is disclosed. The detector includes multiple layers of semiconductor material with the layers having varying thicknesses. The detector is constructed to be segmented in the x-ray penetration direction so as to optimize count rate performance as well as avoid saturation. The detector also includes variable pixel pitch and a flexible binning of pixels to further enhance count rate performance.
摘要:
The present invention relates to a diagnostic X-ray device, system or apparatus for performing diagnostic radiology and a method of configuring such a diagnostic X-ray device, system or apparatus. More specifically, the present invention relates to a diagnostic system for forming at least one image of an object having enhanced contrast. The system comprises a beam source adapted to produce an imaging beam and a masking member adapted to form at least one beam portion from the imaging beam and adapted to image the object. The system further comprises a flat panel detector positioned in a path of at least one beam portion penetrating the object and adapted to form at least one image of the object.
摘要:
The present invention relates to a diagnostic X-ray device, system or apparatus for performing diagnostic radiology and a method of configuring such a diagnostic X-ray device, system or apparatus. More specifically, the present invention relates to a diagnostic system for forming at least one image of an object having enhanced contrast. The system comprises a beam source adapted to produce an imaging beam and a masking member adapted to form at least one beam portion from the imaging beam and adapted to image the object. The system further comprises a flat panel detector positioned in a path of at least one beam portion penetrating the object and adapted to form at least one image of the object.
摘要:
A CT detector module utilizes a simplified FET that effectively sums detector cells in the X direction, allowing for a doubling of scan slices in the Z direction with the same or a lesser number of DAS channels found in conventional CT detector modules.
摘要:
The present invention provides a detector cell having an x-ray absorption component and a thermal sensing component configured to detect thermal differentials in the absorption component resulting from the absorption of x-rays. The absorption component comprises high density materials that respond thermally to the reception of x-rays or other HF electromagnetic energy. The thermal sensing component detects the changes in temperature of the absorption component and outputs electrical signals indicative of the number and intensity of the x-rays absorbed. An image reconstructor then processes those electrical signals to reconstruct an image of the subject scanned. A method of manufacturing the detector cell is also provided.
摘要:
In one aspect, the invention is a method for changing at least one of a number of image slices and in-plane resolutions available in an existing imaging system. The method includes steps of: replacing the existing detector array with a replacement detector array having either narrower detector cells in the x-direction than an existing detector array, a greater number of detector cells than that of the existing detector array, or both; and selecting an in-plane resolution of the replacement detector array in accordance with a maximum bandwidth limit of a communication path in the imaging system.
摘要:
A multi-layer scintillator having a first and a second layer of scintillation material. In one embodiment, the scintillator first layer has fast scintillation characteristics and the second layer has a higher transparency than the first layer. The two scintillating layers are bonded together so that a light signal is transferred from the first layer to the second layer and the second layer to a photodiode adjacent the second layer. The specific scintillating materials are selected to achieve the desired characteristics of the scintillator.
摘要:
The present invention is a directed to a non-pixelated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.