摘要:
A ring network with an automatic protection switching domain includes a control VLAN and at least one data VLAN. A master node in the ring is connected to at least one transit node. Each node in the ring network is linked to an adjacent node by a primary port or a secondary port. The master node receives notification of a fault via the control VLAN, the fault indicating a failed link between adjacent nodes. In response, the master node unblocks its secondary port to traffic on the data VLAN(s). The forwarding database entries on the master node and on the transit node(s) are flushed. Data traffic is flooded to the ring network until forwarding database entries on the master node and on the transit node(s) have been reestablished.
摘要:
Several systems for supporting packet processing are described. A first system supports virtual routing of a packet. A second system supports de-multiplexing of a packet. A third system supports advanced MPLS label processing of a packet.
摘要:
A method of presenting different virtual routers to different end users, classes of service, or packets is provided. An incoming packet is received having a VLAN field and at least one additional field. A key is formed from the VLAN field and at least one other packet field, and mapped into a virtual router identifier (VRID) using an indirection mapping process. The VRID identifies a particular virtual router configuration from a plurality of possible virtual router configurations. A networking device is configured to have the particular virtual router configuration identified by the VRID, and the packet is then forwarded by the configured device.
摘要:
A packet processing system architecture and method are provided. According to a first aspect of the invention, a plurality of quality of service indicators are provided for a packet, each with an assigned priority, and a configurable priority resolution scheme is utilized to select one of the quality of service indicators for assigning to the packet. According to a second aspect of the invention, wide data paths are utilized in selected areas of the system, while avoiding universal utilization of the wide data paths in the system. According to a third aspect of the invention, one or more stacks are utilized to facilitate packet processing. According to a fourth aspect of the invention, a packet size determiner is allocated to a packet from a pool of packet size determiners, and is returned to the pool upon or after determining the size of the packet. According to a fifth aspect of the invention, a packet is buffered upon or after ingress thereof to the system, and a packet for egress from the system assembled from new or modified packet data and unmodified packet data as retrieved directly from the buffer. According to a sixth aspect of the invention, a system for preventing re-ordering of packets in a packet processing system is provided. A seventh aspect of the invention involves any combination of one or more of the foregoing.
摘要:
A pipelined packet processor is described having at least one pipeline, the at least one pipeline having one or more processing slots. Packets are assigned to available ones of the slots, and each of one or more of the assigned packets are processed during one or more cycles of processing. Upon or after a packet has undergone one or more cycles of processing, a packet classification or filtering decision is derived for the packet.
摘要:
An exception handling system for a packet processing system is described. In this exception handling system, there are several exception handlers. One of the exception handlers is selected based on packet processing state data relating to a packet undergoing processing by the packet processing system. The selected exception handler is configured to check for the presence of one or more potential exception conditions associated with the selected exception handler. If one or more of these potential exception conditions are determined to be present, a packet processor selectively modifies the packet processing state data relating to the packet.
摘要:
A packet processing system architecture and method are provided. According to a first aspect of the invention, a plurality of quality of service indicators are provided for a packet, each with an assigned priority, and a configurable priority resolution scheme is utilized to select one of the quality of service indicators for assigning to the packet. According to a second aspect of the invention, wide data paths are utilized in selected areas of the system, while avoiding universal utilization of the wide data paths in the system. According to a third aspect of the invention, one or more stacks are utilized to facilitate packet processing. According to a fourth aspect of the invention, a packet size determiner is allocated to a packet from a pool of packet size determiners, and is returned to the pool upon or after determining the size of the packet. According to a fifth aspect of the invention, a packet is buffered upon or after ingress thereof to the system, and a packet for egress from the system assembled from new or modified packet data and unmodified packet data as retrieved directly from the buffer. According to a sixth aspect of the invention, a system for preventing re-ordering of packets in a packet processing system is provided. A seventh aspect of the invention involves any combination of one or more of the foregoing.
摘要:
A packet processing system architecture and method are provided. According to a first aspect of the invention, packet parser functions are distributed throughout a packet processing system comprising a packet classification system and a packet modification system. According to a second aspect of the invention, an egress mirroring function is provided to the system. According to a third aspect of the invention, a multi-dimensional quality of service indicator for a packet is provided. According to a fourth aspect of the invention, a cascaded combination of multiple, replicated packet processing systems is used to process a packet. A fifth aspect of the invention involves any combination of one or more of the foregoing.
摘要:
A system for statistically sampling packets is described. In this system, upon or after the occurrence of a predefined statistical event in relation to a packet, a pseudo-random value is obtained and compared to a predetermined threshold. Responsive to this comparison, the system selectively arranges to have the packet statistically sampled. A system for compiling statistics for packets undergoing processing by a packet processing system is described. In this system, upon or after the occurrence of a predefined statistical event in relation to a packet, a cumulative index for the packet is updated to reflect the current processing cycle for the packet. Upon or after completion of processing of the packet, whereupon the cumulative index may reflect more than one processing cycle, packet statistics are updated responsive to the cumulative index for the packet. A second system for compiling statistics for packets undergoing processing by a packet processing system is described. In this system, upon or after a predefined statistical event in relation to a packet, a partial statistics update request is queued. A statistics processor monitors the update requests in the queue for completion. Upon or after completion of a statistics update request, the statistics processor updates packet statistics responsive to the completed update request.
摘要:
A ring network with an automatic protection switching domain includes a control VLAN and at least one data VLAN. A master node in the ring is connected to at least one transit node. Each node in the ring network is linked to an adjacent node by a primary port or a secondary port. The master node receives notification of a fault via the control VLAN, the fault indicating a failed link between adjacent nodes. In response, the master node unblocks its secondary port to traffic on the data VLAN(s). The forwarding database entries on the master node and on the transit node(s) are flushed. Data traffic is flooded to the ring network until forwarding database entries on the master node and on the transit node(s) have been reestablished.