Abstract:
This invention provides chimeric molecules that are catalytic antagonists of a target molecule. The catalytic antagonists of this invention preferably comprise a targeting moiety attached to an enzyme that degrades the molecule specifically bound by the targeting moiety. The catalytic antagonists of this invention thus bind to a target recognized by the targeting moiety (e.g., a receptor) the enzyme component of the chimera then degrades all or part of the target. This typically results in a reduction or loss of activity of the target and release of the chimeric molecule. The chimeric molecule is then free to attack and degrade another target molecule.
Abstract:
Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the same property of the precursor hydrolase.
Abstract:
This invention provides chimeric molecules that are catalytic antagonists of a target molecule. The catalytic antagonists of this invention preferably comprise a targeting moiety attached to an enzyme that degrades the molecule specifically bound by the targeting moiety. The catalytic antagonists of this invention thus bind to a target recognized by the targeting moiety (e.g., a receptor) the enzyme component of the chimera then degrades all or part of the target. This typically results in a reduction or loss of activity of the target and release of the chimeric molecule. The chimeric molecule is then free to attack and degrade another target molecule.
Abstract:
Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the same property of the precursor hydrolase.
Abstract:
Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the same property of the precursor hydrolase.
Abstract:
Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the same property of the precursor hydrolase.
Abstract:
Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the same property of the precursor hydrolase.
Abstract:
Novel carbonyl hydrolase mutants derived from the amino acid sequence of naturally-occurring or recombinant non-human carbonyl hydrolases and DNA sequences encoding the same. The mutant carbonyl hydrolases, in general, are obtained by in vitro modification of a precursor DNA sequence encoding the naturally-occurring or recombinant carbonyl hydrolase to encode the substitution, insertion or deletion of one or more amino acids in the amino acid sequence of a precursor carbonyl hydrolase. Such mutants have one or more properties which are different than the same property of the precursor hydrolase.