Abstract:
A system and method for decomposing a digital image is provided. A digital image is represented as a word-graph, which includes words and visualized features, and zone hypotheses that group one or more of the words. Causal dependencies of the zone hypotheses are expressed through a learned generative zone model to which costs and constraints are assigned. An optimal set of the zone hypotheses are inferred, which are non-overlapping, through a heuristic search of the costs and constraints.
Abstract:
Systems provided herein include a learning environment and an agent. The learning environment includes an avatar and an object. A state signal corresponding to a state of the learning environment includes a location and orientation of the avatar and the object. The agent is adapted to receive the state signal, to issue an action capable of generating at least one change in the state of the learning environment, to produce a set of observations relevant to a task, to hypothesize a set of action models configured to explain the observations, and to vet the set of action models to identify a learned model for the task.
Abstract:
Image quality is assessed for a digital image that is a composite of tiles or other image segments, especially focus accuracy for a microscopic pathology sample. An algorithm or combination of algorithms correlated to image quality is applied to pixel data at margins where adjacent image segments overlap and thus contain the same content in separately acquired images. The margins may be edges merged to join the image segments smoothly into a composite image, and typically occur on four sides of the image segments. The two versions of the same image content at each margin are processed by the quality algorithm, producing two assessment values. A sign and difference value are compared with other image segments, including by subsets selected for the orientation of the margins on sides on the image segments. The differences are mapped to displays. Selection criteria determine segments to be re-acquired.
Abstract:
A method of generating a temporal saliency map is disclosed. In a particular embodiment, the method includes receiving an object bounding box from an object tracker. The method includes cropping a video frame based at least in part on the object bounding box to generate a cropped image. The method further includes performing spatial dual segmentation on the cropped image to generate an initial mask and performing temporal mask refinement on the initial mask to generate a refined mask. The method also includes generating a temporal saliency map based at least in part on the refined mask.
Abstract:
A method for detecting and tracking a target includes detecting the target using a plurality of feature cues, fusing the plurality of feature cues to form a set of target hypotheses, tracking the target based on the set of target hypotheses and a scene context analysis, and updating the tracking of the target based on a target motion model.
Abstract:
Systems provided herein include a learning environment and an agent. The learning environment includes an avatar and an object. A state signal corresponding to a state of the learning environment includes a location and orientation of the avatar and the object. The agent is adapted to receive the state signal, to issue an action capable of generating at least one change in the state of the learning environment, to produce a set of observations relevant to a task, to hypothesize a set of action models configured to explain the observations, and to vet the set of action models to identify a learned model for the task.
Abstract:
An advertising system is disclosed. In one embodiment, the system includes a processor and a memory including application instructions for execution by the processor. The application instructions may include a visual analytics engine to analyze visual information including human activity and a content engine separate from the visual analytics engine to provide advertising content to one or more potential customers. Further, the instructions may include an interface module to enable information generated from analysis of the human activity by the visual analytics engine to be transferred to the content engine in accordance with a specification in which the information generated is characterized with a hierarchical, object-oriented data structure. Additional methods, systems, and articles of manufacture are also disclosed.
Abstract:
A tracking and recognition system is provided. The system includes a computer vision-based identity recognition system configured to recognize one or more persons, without a priori knowledge of the respective persons, via an online discriminative learning of appearance signature models of the respective persons. The computer vision-based identity recognition system includes a memory physically encoding one or more routines, which when executed, cause the performance of constructing pairwise constraints between the unlabeled tracking samples. The computer vision-based identity recognition system also includes a processor configured to receive unlabeled tracking samples collected from one or more person trackers and to execute the routines stored in the memory via one or more algorithms to construct the pairwise constraints between the unlabeled tracking samples.
Abstract:
A computer-implemented system and method for retrieving a digital image through document image decomposition is provided. A stored digital image is retrieved. Generic visual features are extracted. The features are grouped into a primitive layer including word-graphs that each include words and features. The words are grouped into a layout layer including zone hypotheses that each include one or more of the words. Causal dependencies between the word-graphs and the zone hypotheses are expressed through zone models that include a joint probability defining a pair of probabilistic models generated through a learned binary edge classifier. Each pair of probabilistic models is expressed as an optimal set selection problem including a set of cost functions and constraints. The optimal set selection problem is evaluated through a heuristic search of the cost functions and constraints and a non-overlapping optimal set of the zone hypotheses is provided that characterize the stored digital image.
Abstract:
A method of generating a temporal saliency map is disclosed. In a particular embodiment, the method includes receiving an object bounding box from an object tracker. The method includes cropping a video frame based at least in part on the object bounding box to generate a cropped image. The method further includes performing spatial dual segmentation on the cropped image to generate an initial mask and performing temporal mask refinement on the initial mask to generate a refined mask. The method also includes generating a temporal saliency map based at least in part on the refined mask.