摘要:
The intelligent distributed file system enables the storing of file data among a plurality of smart storage units which are accessed as a single file system. The intelligent distributed file system utilizes a metadata data structure to track and manage detailed information about each file, including, for example, the device and block locations of the file's data blocks, to permit different levels of replication and/or redundancy within a single file system, to facilitate the change of redundancy parameters, to provide high-level protection for metadata, to replicate and move data in real-time, and so forth.
摘要:
In one embodiment, a user or client device is connected to a distributed file system comprised of one or more physical nodes. The data on each of the physical nodes store metadata about files and directories within the file system. Some of the embodiments permit a user to take a snapshot of data stored on the file system. The snapshot may include a single file, a single directory, a plurality of files within a directory, a plurality of directories, a path on the file system that includes nested files and subdirectories, or more than one path on the file system that each includes nested files and directories. In one embodiment, the metadata comprises mini-snapshots for directories representing a path from the root of the file system to the root of the snapshot. The mini-snapshots serve as stand-ins for portions of the file system which are not included in the snapshot, but which permit access to the snapshot data in an intuitive way.
摘要:
Systems and methods for restriping files distributed among a set of smart storage units, wherein data blocks for a particular stripe do not typically need to be located at any particular location on the storage units, wherein data can be typically restriped among the smart storage units with minimal data movement, and wherein data is typically protected and recoverable even if a system failure occurs during the restriping process.
摘要:
The intelligent distributed file system enables the storing of file data among a plurality of smart storage units which are accessed as a single file system. The intelligent distributed file system utilizes a metadata data structure to track and manage detailed information about each file, including, for example, the device and block locations of the file's data blocks, to permit different levels of replication and/or redundancy within a single file system, to facilitate the change of redundancy parameters, to provide high-level protection for metadata, to replicate and move data in real-time, and so forth.
摘要:
In some embodiments, storage devices, such as a storage drive or a storage node, in an array of storage devices may be reintroduced into the array of storage devices after a period of temporary unavailability without fully rebuilding the entire previously unavailable storage device.
摘要:
In one embodiment, a user or client device is connected to a distributed file system comprised of one or more physical nodes. The data on each of the physical nodes store metadata about files and directories within the file system. Some of the embodiments permit a user to take a snapshot of data stored on the file system. The snapshot may include a single file, a single directory, a plurality of files within a directory, a plurality of directories, a path on the file system that includes nested files and subdirectories, or more than one path on the file system that each includes nested files and directories. In an embodiment, a snapshot tracking data structure is maintained for efficient creation and deletion of the snapshot.
摘要:
In one embodiment, a user or client device communicates with a distributed file system comprised of one or more physical nodes. The data on each of the physical nodes store metadata about files and directories within the file system. Some of the embodiments permit a user to take a snapshot of data stored on the file system. The snapshot may include a single file, a single directory, a plurality of files within a directory, a plurality of directories, a path on the file system that includes nested files and subdirectories, or more than one path on the file system that each includes nested files and directories. In some embodiments, systems and methods intelligently choose whether to use copy-on-write or point-in-time copy when saving data in a snapshot version of a file whose current version is being overwritten. In some embodiments, systems and methods allow snapshot users to return from a snapshot directory to the immediate parent directory from which the user entered into the snapshot.
摘要:
Systems and methods are disclosed that provide an indexing data structure. In one embodiment, the indexing data structure is mirrored index tree where the copies of the nodes of the tree are stored across devices in a distributed system. In one embodiment, nodes that are stored on an offline device are restored, and an offline device that comes back online is merged into the distributed system and given access to the current indexing data structure. In one embodiment, the indexing data structure is traversed to locate and restore nodes that are stored on offline devices of the distributed system.
摘要:
In one embodiment, a user or client device communicates with a distributed file system comprised of one or more physical nodes. The data on each of the physical nodes store metadata about files and directories within the file system. Some of the embodiments permit a user to take a snapshot of data stored on the file system. The snapshot may include a single file, a single directory, a plurality of files within a directory, a plurality of directories, a path on the file system that includes nested files and subdirectories, or more than one path on the file system that each includes nested files and directories. In some embodiments, systems and methods intelligently choose whether to use copy-on-write or point-in-time copy when saving data in a snapshot version of a file whose current version is being overwritten. In some embodiments, systems and methods allow snapshot users to return from a snapshot directory to the immediate parent directory from which the user entered into the snapshot.
摘要:
Systems and methods are provided for scanning files and directories in a distributed file system on a network of nodes. The nodes include metadata with attribute information corresponding to files and directories distributed on the nodes. In one embodiment, the files and directories are scanned by commanding the nodes to search their respective metadata for a selected attribute. At least two of the nodes are capable of searching their respective metadata in parallel. In one embodiment, the distributed file system commands the nodes to search for metadata data structures having location information corresponding to a failed device on the network. The metadata data structures identified in the search may then be used to reconstruct lost data that was stored on the failed device.