Abstract:
An energy saving gas discharge lamp, and method of making same, is provided. The gas discharge lamp includes a light-transmissive envelope, and an electrode within the light-transmissive envelope to provide a discharge. A light scattering reflective layer is disposed on an inner surface of the light-transmissive envelope. A phosphor layer is coated on the light scattering reflective layer. A discharge-sustaining gaseous mixture is retained inside the light-transmissive envelope. The discharge-sustaining gaseous mixture includes more than 80% xenon, by volume, at a low pressure.
Abstract:
A mounting assembly (10) for an electrodeless 1 amp (100). The mounting assembly (10) comprises a fixture housing (14) having an inner surface (16) and an outer surface (18). The fixture housing is preferably made from aluminum. Spaced-apart heat sinks (20, 21) are affixed to the inner surface (16) of the fixture housing (14). A reflector (22), which is preferably concave, as is the fixture housing, is positioned within the fixture housing (14). The reflector (22) contains two apertures (24, 26) that are aligned with the heat sinks (20, 21). Thermal insulators (28, 29) are positioned in the apertures and surround the heat sinks, thus thermally isolating the reflector from the heat sinks. The lamp (100) is mounted in the fixture housing by attaching brackets (40, 42), which surround the ferrite transformer cores of the lamp, directly to the top surfaces of the heat sinks (20, 21). Mounting is preferably accomplished by having threaded holes formed in the heat sinks and fixing the brackets in place via screws through the legs (44) and screw receiving slots (46).
Abstract:
A lamp having a measurable ultra violet light emission and having thereon a first marking revealing at least the operating characteristics of said lamp and a second marking evidencing a change in characteristics in response to exposure to ultra violet emissions. In a preferred embodiment of the invention a symbol or other indicia is provided on the lamp as the second marking that fades in accordance with the number of hours the lamp is operating, thus providing an indication of the UV output of the lamp.
Abstract:
A lamp having a measurable ultra violet light emission and having thereon a first marking revealing at least the operating characteristics of said lamp and a second marking evidencing a change in characteristics in response to exposure to ultra violet emissions. In a preferred embodiment of the invention a symbol or other indicia is provided on the lamp as the second marking that fades in accordance with the number of hours the lamp is operating, thus providing an indication of the UV output of the lamp.
Abstract:
An energy saving gas discharge lamp, and method of making same, is provided. The gas discharge lamp includes a light-transmissive envelope, and an electrode within the light-transmissive envelope to provide a discharge. A light scattering reflective layer is disposed on an inner surface of the light-transmissive envelope. A phosphor layer is coated on the light scattering reflective layer. A discharge-sustaining gaseous mixture is retained inside the light-transmissive envelope. The discharge-sustaining gaseous mixture includes more than 80% xenon, by volume, at a low pressure.
Abstract:
An energy saving gas discharge lamp, and method of making same, is provided. The gas discharge lamp includes a light-transmissive envelope, and an electrode within the light-transmissive envelope to provide a discharge. A light scattering reflective layer is disposed on an inner surface of the light-transmissive envelope. A phosphor layer is coated on the light scattering reflective layer. A discharge-sustaining gaseous mixture is retained inside the light-transmissive envelope. The discharge-sustaining gaseous mixture includes more than 80% xenon, by volume, at a low pressure.
Abstract:
An electrodeless lamp (10a), wherein the lamp comprises a closed-loop, tubular lamp envelope (13) with parallel cylindrical glass tubes (14a 16a) containing an arc generating and sustaining medium, means (20a) in the form of magnetic toroids for energizing the medium; and a reflector coating (22) associated with the envelope (13) and affixed thereto. In a preferred embodiment of the invention the reflector coating (22) is on the internal surface (24) of the envelope and comprises a layer of a reflective m, such as alumina. Alternatively, the reflective coating (22) can be applied to the external surface of the envelope.
Abstract:
An electrodeless lamp (10a), wherein the lamp comprises a closed-loop, tubular lamp envelope (13) with parallel cylindrical glass tubes (14a 16a) containing an arc generating and sustaining medium, means (20a) in the form of magnetic toroids for energizing the medium; and a reflector coating (22) associated with the envelope (13) and affixed thereto. In a preferred embodiment of the invention the reflector coating (22) is on the internal surface (24) of the envelope and comprises a layer of a reflective m, such as alumina. Alternatively, the reflective coating (22) can be applied to the external surface of the envelope.