Abstract:
One example includes an optical isolator system. An optical isolator element transmits a first optical beam provided at a first port to be output from a second port and blocks a second optical beam provided at the second port from being output from the first port. The optical beams each include a first component and a second component that are orthogonally linearly polarized. The optical isolator element can provide optical isolation based on transverse shifting the first and second components of the optical beams relative to each other to provide propagation of the first optical beam from the first port to the second port and to prevent propagation of the second optical beam from the second port to the first port. At least one phase adjuster adjusts a relative phase of the first and second components of the first optical beam to align the components of the first optical beam.
Abstract:
One example includes a navigation system. The navigation system includes an inertial navigation system (INS) that is configured to provide a coordinate frame corresponding to an inertial reference of the INS relative to a geodetic coordinate system. The coordinate frame includes a reference axis that defines a reference orientation of the INS. The system also includes an optical tracking device configured to obtain a reference image to determine an orientation of a boresight axis of the optical tracking device. The system further includes an alignment controller configured to compare the reference axis based on the coordinate frame and the boresight axis based on the reference image to determine an angular misalignment between the reference axis and the boresight axis, and to adjust the reference orientation to align the reference axis to the boresight axis based on the determined angular misalignment.
Abstract:
A system is provided for controlling the amplitude of a vibrating resonant sensor through a drive signal applied to the resonator. The system comprises a controller that provides the drive signal to a forcer coupled to the resonator to excite the resonator into vibration at its resonant frequency. The system further comprises a buffer having an input node that receives charge of a pickoff capacitor of the resonator that is a measure of the resonator vibration and a current reference waveform. The buffer provides an output that is a difference signal that represents an error of the resonator vibration that corresponds to a difference between the measured resonator vibration and the current reference waveform, wherein the controller adjusts the drive signal in order to null the difference signal.
Abstract:
An exemplary navigation system uses a master navigation component at a first location in a vehicle and a slave navigation component at a second location that is a variable displacement to the first location due to physical deformation of the vehicle. Static and dynamic location components provide static and dynamic information of the displacement between the first and second locations. An error estimator estimates errors in the navigational measurement data generated by the slave navigation component based on the navigational measurement data generated by the master navigation component and the displacement information provided by the static and dynamic location components. The master navigation component corrects the navigation measurement data of the slave navigation component based on the determined error and translates the corrected navigation measurement data of the slave navigation component into navigational measurement data in its coordinate system.
Abstract:
A gyroscope having photonic crystals for sensing rotation uses the Sagnac effect to determine angular motion. The gyroscope comprises a photonic crystal capable of guiding counter-propagating light beams in a closed path. A light source, coupling, and detection apparatus permits detection of phase changes between the counter-propagating beams, thereby permitting measurement of angular rotation. The photonic crystal comprises a periodic structure of pillars and voids which creates a photonic bandgap waveguide within which light waves in the proper wavelength range propagate with low loss.
Abstract:
The invention is a method and apparatus for improving the accuracy of an inertial navigation system. The method comprises (1) obtaining a measure of the angular velocity of a body frame of reference having a first axis, a second axis, and a third axis, (2) obtaining a measure of the acceleration of a first reference point in the direction of the first axis, a second reference point in the direction of the second axis, and a third reference point in the direction of the third axis, the first, second, and third reference points being fixed in the body frame, and (3) determining compensated acceleration values. A compensated acceleration value is the difference of the measure of acceleration of a reference point and a compensation quantity. A compensation quantity is an estimate of the portion of the acceleration of the reference point resulting from the rotation of the body frame. The method further comprises establishing the optimum navigation center based on a criterion of goodness. The criterion of goodness is minimal weighted acceleration error where acceleration error is a function of the direction of the angular velocity vector and weighted acceleration error is obtained by multiplying the acceleration error by a weighting function and integrating the result over all directions of the angular velocity vector.
Abstract:
The invention is a method and apparatus for generating a primary pseudorandom bit sequence consisting of a plurality of contiguous P subsequences. Each P subsequence consists of a start sequence of predetermined length followed by a sequence of trailing bits. The method comprises three steps. The first step consists of deriving a feedback bit from each generating sequence in a P subsequence in accordance with a specified rule where a generating sequence is any sequence of contiguous bits in the P subsequence having the same length as the start sequence. The bit that follows a generating sequence is called the trailing bit for that generating sequence. The second step of the method consists of determining a sequence of one or more modifier bits to be used in modifying the P subsequence. The third step of the method consists of modifying the P subsequence utilizing the one or more modifier bits.
Abstract:
The invention is a method and apparatus for obtaining an accurate value x1c of a variable x1 based on an estimate x1e that is a function of K variables x1, x2, . . . , xk, . . . , xK. The method comprises the steps of (a) obtaining a plurality of estimates x1e, x2e, . . . , xke, . . . , xKe of the variables x1, x2, . . . , xk, . . . , xK over a method-execution time period, the values of the variables x1, x2, . . . , xk, . . . , xK changing or being changed during the method-execution time period; (b) obtaining from an external source the actual values x1a of x1 during the method-execution time period; (c) defining a compensation model &dgr;x1 that is a function of one or more of the estimates x1e, x2e, . . . , xke, . . . xKe of the variables x1, x2, . . . , xk, . . . , xK, the compensation model being further defined by I unknown constants a1, a2, . . . , ai, . . . , aI; (d) applying an operator G to the values of x1e−x1a and &dgr;x1; (e) determining the values of a1, a2, . . . , ai, . . . , aI; and (f) determining the value of x1c.
Abstract:
The invention is a method and apparatus for determining the rotation of a medium through which a light beam propagates by modulating the light beam with a pseudorandom sequence of bits. The method comprises the steps of (1) selecting a "0" or a "1" as the next bit of the modified pseudorandom bit sequence if one or more criteria are satisfied, the criteria being based on the measured properties of a plurality of prior bits of the modified pseudorandom bit sequence; otherwise: (2) selecting the next bit of an initial pseudorandom bit sequence as the next bit of the modified pseudorandom bit sequence, the next bit of the initial pseudorandom bit sequence being a function of one or more prior bits of the initial pseudorandom bit sequence.
Abstract:
A gyroscope assembly (10) includes a ring-shaped fiber optic coil (14) and a coil conforming enclosure (12, 16) of high magnetic permeability ferromagnetic material. The enclosure is ring-shaped to conform with the shape of the coil, and includes a portion (22) extending within the internal hole of the coil ring. Therefore, the coil is intimately and fully encased within high magnetic permeability material. In particular, the enclosure comprises a coil supporting spool (12) and a cover (16) secured to the spool. The spool includes a base (18) which is provided with a central hole (20) and a tubular wall (22) extending perpendicularly from the base. Coil (14) is bonded to base (18). Both the spool and the cover are formed of high magnetic permeability material, and the cover is placed about the fiber optic coil and attached to the spool. The coefficient of thermal expansion material used for the spool is matched to that of the coil pack to minimize stress imposed upon the fiber. An outer shield (28), roughly cylindrical in shape, may be further attached to the outside of the inner, toroidal shield, and the two shields are separated by a layer of low magnetic permeability material, such as of low magnetic permeability stainless steel or aluminum.